Boosting sensitivity in searches for heavy resonances with the ATLAS detector

CPAN 2023

Josu Cantero (UV/IFIC)

October 2nd, 2023

ATLAS

EXPERIMENT

Josu Cantero

Introduction

- What is a jet?
 - Collimated bunches of stable particles.
 - Jets are reconstructed using jet algorithms
 - Sequencial Clustering algorithms: k_t , anti- k_t , CA.
 - These algorithms depend on one parameter: *R* (usually called jet radius)
- Jets are typically produced by light quarks/gluons created in the hard interaction or in hadronic decays of heavy resonances: $W, Z \rightarrow q\overline{q}, H \rightarrow b\overline{b}, t \rightarrow qq'b$.
 - If R sufficiently large, the decay products can be reconstructed in one jet: $R \sim 2m/p_{\rm T}$.
 - R = 1 is used in ATLAS.
 - The so-called large-R jets.
- Jet tagging strategy tries to identify which particle originated the jet using the information contained in the jet.
 - This is typically quantified by means of
 - jet substructure variables.

Jet tagging

- Jet tagging very useful in searches including massive exotic resonances decaying into SM massive bosons or t/\overline{t} quarks.
 - Extensively used nowadays in searches at LHC.
 - Higher \sqrt{s} increases the fraction of boosted objects.
 - Increase signal sensitivity searching for massive exotic resonances.
 - High- $p_{\rm T}$ SM resonances reconstructed as single large-R jets.
 - Jet tagging to discriminate between signal-like final states and background where jets are originated from light quarks and gluons.

Phys. Rev. Lett 100 (2008) 242001

Jet substructure as a new Higgs search channel at the LHC

Jonathan M. Butterworth, Adam R. Davison Department of Physics & Astronomy, University College London.

Mathieu Rubin, Gavin P. Salam LPTHE; UPMC Univ. Paris 6; Univ. Denis Diderot; CNRS UMR 7589; Paris, France.

It is widely considered that, for Higgs boson searches at the Large Hadron Collider, WH and ZH production where the Higgs boson decays to $b\bar{b}$ are poor search channels due to large backgrounds. We show that at high transverse momenta, employing state-of-the-art jet reconstruction and decomposition techniques, these processes can be recovered as promising search channels for the standard model Higgs boson around 120 GeV in mass.

• Already proposed in 2008 to increase sensitivity of VH channel using $H \rightarrow b\overline{b}$ decays.

Jet substructure

- Jets originated from boosted resonances decay have distinctive substructure compared to jets originated from light quarks/gluons.
 - Sharp mass peaks/harder splitting scales.
 - ► Subjet multiplicity/b-tagging of large-*R* jet.
 - Color reconnection/Energy-Energy correlation variables.

Josu Cantero

Large-*R* jet collections

- From experimental point of view jet constituents can be defined in different ways:
 - LCTopo (Local Calibrated Topoclusters): 3D clusters of noise-suppressed calorimeter cells.
 - PFlow (Particle Flow Objetcts): combine tracking and calorimeter information.
 - ► Improve performance/pile-up stability for low pT jets. Eur. Phys. J. C 77 (2017) 466
 - High pT tracks excluded (worse energy resolution than clusters).
 - TCC (Track to Calo Cluster): tracking and calorimeter information combined in preference to tracking information (i.e η , ϕ information coming purely from tracks). <u>ATL-PHYS-PUB-2017-015</u>
 - Very good at high pT.
 - Use calorimeter energy scale and tracker spatial coordinates.
 - UFO (Unified Flow Objects): merge PFlow and TCC for better performance in a wider pT range. Eur. Phys. J. C 81 (2021) 334

Josu Cantero

Large-R jet grooming

- Use to reduce sensitivity to pile-up and unrelated radiation.
 - Improve response ($O_{\rm reco}/O_{\rm truth}$) and pile-up stability of jet substructure variables.

k_t, R=R_{sut}

- Several groomers in the market.
 - Trimming and SoftDrop used in ATLAS.

Trimming

• Remove low-pT contributions at the subjet level.

- Define splittings using CA declustering.
- Apply SoftDrop:
 - Start from first jet splitting.
 - Reach passing condition for both splittings.

Keep both

"Drop" constituent

- There are different ways to build a tagger.
 - Moment-based taggers:
 - Identify jet substructure moments with good separation power and apply cuts on them.
 - This can be done sequentially: 3-var W/Z tagger.
 - On a NN score: ANN W/Z tagger, DNN top tagger.
 - Declustering taggers:
 - Attempt to reconstruct the shower history of the jet.
 - Shower deconstruction: quantify if jet declustering is signal or background like: SD top tagger.
 - Lund plane based taggers: use Lund-plane information to discriminate between signal and background jets.
 - NNs allow to do it quite efficiently i.e GNNs

Constituent based taggers:

- Use jet constituent information to feed a NN to discriminate between signal and bkg jets.
 - Large number of parameters is typically needed.

	AUC	Acc	$1/\epsilon_B \ (\epsilon_S = 0.3)$			#Param
			single	mean	median	
CNN [16]	0.981	0.930	$914{\pm}14$	$995{\pm}15$	975 ± 18	610k
ResNeXt [31]	0.984	0.936	1122 ± 47	1270 ± 28	$1286{\pm}31$	1.46M
TopoDNN [18]	0.972	0.916	$295{\pm}5$	382 ± 5	378 ± 8	59k
Multi-body \overline{N} -subjettiness 6 [24]	0.979	0.922	$792{\pm}18$	$798{\pm}12$	$808{\pm}13$	57k
Multi-body N-subjettiness 8 24	0.981	0.929	867 ± 15	$918{\pm}20$	$926{\pm}18$	58k
TreeNiN [43]	0.982	0.933	$1025 {\pm} 11$	$1202{\pm}23$	$1188{\pm}24$	34k
P-CNN	0.980	0.930	732 ± 24	$845{\pm}13$	834 ± 14	348k
ParticleNet [47]	0.985	0.938	$1298{\pm}46$	$1412{\pm}45$	$1393{\pm}41$	498k
LBN [19]	0.981	0.931	$836{\pm}17$	$859{\pm}67$	$966{\pm}20$	705k
LoLa 22	0.980	0.929	722 ± 17	768 ± 11	765 ± 11	127k
LDA 54	0.955	0.892	$151{\pm}0.4$	$151.5{\pm}0.5$	$151.7{\pm}0.4$	184k
Energy Flow Polynomials [21]	0.980	0.932	384			1k
Energy Flow Network [23]	0.979	0.927	633 ± 31	$729{\pm}13$	$726{\pm}11$	82k
Particle Flow Network 23	0.982	0.932	$891{\pm}18$	$1063{\pm}21$	$1052{\pm}29$	82k
GoaT	0.985	0.939	1368 ± 140		$1549{\pm}208$	35k

Josu Cantero

Boosting sensitivity in searches for heavy resonances 6

Phys. Rev. Lett. 124 (2020) 222002

ATLAS

ln(1/z)

10⁻²

''(p_⊤

√s = 13 TeV, 139 fb⁻¹, p_{⊤1} > 675 GeV

dln(1/z) dln($R/\Delta R$)

0.9

0.6

0.5

- Trimmed LCTopo Large-R jets taggers
 - ▶ 3-variable based W and Z taggers: D_2 , N_{trk} and m_{iet}^{comb} .
 - Also available for TCC Large-R jets.
 - DNN top taggers: based on jet moments.
 - Xbb tagger: b-tagging info from three leading VR-trackjets feeding a NN.

Inputs to DNN top tagger

			$D_{\rm Xhh}$	
Observable	Variable	Used for	- X00	
Calibrated jet kinematics	$p_{\rm T}, m^{\rm comb}$	top,W		
Energy correlation ratios	e_3, C_2, D_2	top,W		
N-subjettiness	$ au_1, au_2, au_{21}$	top, W		
TV-Subjetimess	$ au_{3}, au_{32}$	top		
Fox–Wolfram moment	$R_2^{\rm FW}$	W	³⁵ (²	
	Z _{cut}	W	۲) ۲) 30	
Splitting measures	$\sqrt{d_{12}}$	top, W	ctior	
	$\sqrt{d_{23}}$	top	reje	
Planar flow	\mathcal{P}	W	punc	
Angularity	<i>a</i> ₃	W	19 19	
Aplanarity	A	W	ё В 10	
KtDR	KtDR	W	ł	
Qw	Q_w	top		
		· · · · · ·		

 $_{\rm b} = \ln \frac{p_{\rm Higgs}}{f_{\rm top} \cdot p_{\rm top} + (1 - f_{\rm top}) \cdot p_{\rm multijet}}$

W tagger

50% and 80% flat signal efficiency WPs defined

Top tagger

Josu Cantero

- Differences between data and MC on jet substructure lead to differences on jet tagging performance
 - Taggers need to be calibrated!
 - Calibration is done by means of Scale Factors (SFs).
 - The MC efficiency is corrected to data efficiency: $SF_{\rm eff}(p_{\rm T}) = \epsilon_{\rm data}/\epsilon_{\rm MC}$.
 - Inefficiency SFs are needed to maintain unitarity: $SF_{\text{ineff}}(p_{\text{T}}) = (1 - SF_{\text{eff}} \cdot \epsilon_{\text{MC}})/(1 - \epsilon_{\text{MC}})$
- Semileptonic *t*t

 events to estimate the SFs for top and W taggers.
 Xbb tagger 60% WP
- $Z \rightarrow b\overline{b}, g \rightarrow b\overline{b}$ and semileptonic $t\overline{t}$ for Xbb tagger.
- Multijet and γ +jets events for background SFs in 200 GeV $\lesssim p_T \lesssim$ 3 TeV.
- MC based high- $p_{\rm T}$ extrapolation uncertainties

Leading large-*R* jet *m*^{comb} [GeV]

Josu Cantero

- SD CS+SK UFO Large-R jets.
 - 3-variable based W and Z taggers: D_2 , N_{trk} and m_{iet}^{UFO} .
 - ANN W/Z tagger:
 - decorrelating tagger score and m^{UFO}_{iet}
 - Based on jet moments.
 - Contained and inclusive DNN top taggers.
 - Optimisation of jet moments with respect to previous version.

Josu Cantero

ParticleNet top tagger

- Huge effort to derive taggers based on low level quantities.
 - All jet information is contained in the constituents.
 - Feed NNs with constituents to increase the performance?
 - Modern architectures help on this task: GNN, Transformers ...
 - Physics wise quantities replaced by powerful NNs?
 - Blackbox: difficult to understand which physics the NN is learning.

GNNs including Lund-plane information best performance W tagger.

• Physics motivated inputs \rightarrow How the information is sorted still matters!

Josu Cantero Boosting sensitivity in searches for heavy resonances 10

W tagger

- Similarly, including all available tracking information beneficial for $H \rightarrow b\overline{b}$ tagger.
 - $p_{\rm T}$, mass of the jet, impact parameters, number of hits in different ID layers of associated tracks
 - All these information is used to feed a Transformer architecture \approx 1.5M of parameters.

ATL-PHYS-PUB-2023-021

• A factor of 2.5 of improvement in multi jet rejection, having a 1.5 higher signal efficiency at $p_{\rm T}$ > 1 TeV!

Physics analyses

$W' \rightarrow tb \text{ search } (arXiv:2308.08521)$

- Theories beyond the Standard Model (SM), involve enhanced symmetries that predict new gauge bosons, usually called W' or Z' bosons.
 - Different models/theories such us extra dimensions, strong dynamics predict new vector charged-current interactions, some with preferential couplings to quarks or third-generation particles.
 - Sequential Standard Model (SSM) to capture main phenomenology: $m_{W'}$,
 - $W_L/W_R, \kappa = g'/g$
 - Focus on $W' \to tb$ decay channel.

- Hadronic and leptonic top decay channels considered in this search.
 - For large $m_{W'}$, boosted tops will be produced: jet tagging techniques to identify hadronically decaying top \rightarrow DNN top tagger!
 - Different SRs are defined based on the number of final state b-jets (leptonic/hadronic channel) and DNN top tagger score (hadronic channel) to improve signal sensitivity.

$W' \rightarrow tb \text{ search } (arXiv:2308.08521)$

- Main backgrounds:
 - Leptonic channel: $t\overline{t}$, W+jets, Z+jets, single top
 - Dedicated control regions (CRs) to get insight on background norm./shapes.
 - Hadronic channel: mutlijet
 - Data-driven estimation based on dedicated CRs.
 - Profiled binned likelihood fit to SR and CRs to test signal hypothesis.

$W' \rightarrow tb \text{ search } (arXiv:2308.08521)$

- 2D limits as functions of κ and $m_{W'_I}/m_{W'_R}$ are derived:
 - For $\kappa = 1.0$, right-handed (left-handed) W' with masses below 4.6 (4.1)TeV are excluded.

Josu Cantero

High p_T^H measurement in VH final state (ATLAS-CONF-2023-067)

- The p_T^H distribution is measured in $pp \rightarrow V(q\overline{q})H(b\overline{b})$ processes.
 - Larger W/Z branching fraction in hadronic channels allows to extent the VH measurement beyond $p_{\rm T}$ > 400 GeV.
 - Main background coming form multi jet events estimated with a data-driven method.
 - W/Z and Xbb taggers applied to improve signal sensitivity.
- Signal strength estimated from fits to the mass of the Higgs candidate.

W/Z leptonic channel

Josu Cantero

Conclusions

- Jet tagging is a powerful tool which helps to improve signal sensitivity.
 - It allows to include hadronic decay channels of boosted resonances.
 - Larger branching fractions than leptonic channels.
 - In the case of boosted tops, typically better sensitivity at very large p_T compared to leptonic decay channel.
 - Fully reconstruct the event with Ws in the final state.
 - Not possible in $W \rightarrow l\nu_l$ decay channels.
 - Taggers need to be calibrated for an optimal use in physics analyses.
- On the experimental side, Large-*R* jet definition crucial to improve tagging performance.
 - Better grooming techniques, jet constituent definition ...
- Machine learning usual technique these days to improve tagging performance.
 - Better architectures able to extract crucial information from quite low level jet inputs.
 - Challenge for the calibration: modelling dependence, pile-up stability ...