# ttX (W, Higgs) measurements at CMS

CPAN Days Santander October 3<sup>rd</sup> 2023





EUROPEAN UNION

European Regional

Development Fund



Clara Ramón Álvarez\* On behalf of the CMS Collaboration



CONSEJERÍA DE CIENCIA, INNOVACIÓN Y UNIVERSIDAD

\*Partially funded by *Consejería de Ciencia,* Innovación y Universidad (Gobierno del Principado de Asturias), through "Ayudas del Programa Severo Ochoa".

#### clara.ramon.alvarez@cern.ch



Universidad de Oviedo



#### Grant PID2020-113341RB-100 funded by



# Why to study ttH...



At LHC gg fusion is the dominant H production mode

#### **Challenging and interesting**

- **Direct probe** of top-Higgs coupling,  $y_t \sim 1$  (largest in the SM)
- BSM  $y_t = -1 \rightarrow \text{ constructive interference} \rightarrow \sigma_{tH} \sim 0.8 \text{ pb}$

Will summarize the studies from EPJC 81, 378 (2021) and JHEP 07 (2023) 092



# ... and ttW

- Main background for ttH, tttt...
- EWK induced process at LO: sizable difference between  $t\bar{t}W^+$  and  $t\bar{t}W^-$  production
- Measured σ(ttW) consistently above theory value (both in ATLAS and CMS)
- Active discussion about the modelling of this process
- Sensitive to top-electroweak coupling
- Handle to study the back-forward asymmetry in tt production at pp colliders

Will summarized the studies from <u>JHEP 07 (2023) 219</u>



# Strategy

Using multilepton final states, categorize events depending on the lepton multiplicity

- For tttH analysis, 12 categories (focusing on the 3 most sensitive)
- For tttw analysis, 2 categories (2 same-sign (ss) leptons ( $\ell$ ) and  $3\ell$ )

**Dedicated MVA to select isolated leptons** from H, W and  $\tau$  decays is crucial in this analysis  $\rightarrow$  Reduce one of the main backgrounds

Dedicated **selection on each category**. Using Jet and b-tagging multiplicities and vetoing opposite charge leptons within Z peak

#### **Backgrounds:**

<u>Reducible backgrounds:</u>
➢ Non prompt leptons
➢ Electron charge flips

Estimated with data-

Photon Conversions

driven techniques

#### Irreducible backgrounds:

- ➤ tīZ, tīW (tīH)
- Dibosons

Control regions to constrain these backgrounds



# t**t**W MC



# ttH event classification

- **Dedicated NN** in each of the 12 signal categories in order to discriminate signal from background
- Dedicated **node to target**  $t\bar{t}W$  in  $2\ell ss+0\tau$  category
- Further classification depending on flavor, b-tag multiplicity...



# ttH - CP interpretation

- Lagrangian can be parametrized as:  $\mathcal{L}_{t\bar{t}H} = \frac{-y_t}{2} \bar{\psi}_t (\kappa_t + i\gamma_5 \tilde{\kappa}_t) \psi_t H$
- Modifications on cross section and kinematic variables
- Focuses on three most sensitive categories ( $2\ell ss + 0\tau$ ,  $3\ell$  and  $2\ell ss + 1\tau$ )
- BDT trained in each category to exploit kinematic differences between ttH CP-even and CP-odd, outputs used to further classify the events in the ttH node



# t**t**H result

- Simultaneous **maximum likelihood fit** in the signal region categories as well as the control regions
  - $t\bar{t}W$  and  $t\bar{t}Z$  signal strengths ( $\mu$ ) freely floated in the fit
- CP interpretation: using kinematic differences between tte CP-even and CP-odd components
  - Yields parametrized using:  $\kappa_t$  and  $\tilde{\kappa_t}$  (ratio of the CP-even and CP-odd terms to SM expectation, respectively)



# ttw event classification

- $2\ell ss$ : a NN is used to distinguish signal from background
  - Further classification depending on flavor and **charge** of the leptons
- $3\ell$ : Events categorized using charge of the leptons, jet and b-tag multiplicities.
  - Invariant mass of the  $3\ell$  is used as discriminating variable



### t**t**W Results

Simultaneous **maximum likelihood fit** performed using signal regions as well as control regions

- $\ensuremath{t\bar{t}Z}$  normalization is freely floated in the fit
- $\sigma_{t\bar{t}W} = 868 \pm 40 \pm 51$  fb (reducing syst. unc. by a factor >2 wrt. previous CMS measurement)
- $\mu(t\bar{t}W) = 1.47 \pm 0.11 \rightarrow \text{compatible with SM within 2 s.d.}$
- Compatible with EPJC 81, 378 (2021) and ATLAS-CONF-2023-019
- Also perform a simultaneous extraction of  $t\bar{t}W^{\scriptscriptstyle +}$  and  $t\bar{t}W^{\scriptscriptstyle -}$
- The ratio is found to be 1.61  $\pm$  0.15  $(stat)^{+0.07}_{-0.05}$   $(syst) \rightarrow$  good agreement with SM



# **Prospects for ttH**

Aim to perform differential measurements using full Run 2 dataset

Study differentially:  $p_T^H$  and  $m_{ttH}$ 

- Use maximum likelihood fit unfolding
- DNN used to regress the p<sub>T</sub> (several strategies tried)
  - Kinematic information from objects, top tagger, missing transvers energy, jet multiplicity...

g 00000

g 00000

Η

 $W^-$ 

• Proxy variable for  $m_{ttH}$ 

DNN  $p_T^H$  regressor in the  $2\ell ss+1\tau$ 



11

Work in progress

# **Prospects for tłW**

#### Work in progress



### Summary

- Run 2 allowed to measure low cross section processes with high precision:
  - Unprecedent amount of data
  - Improvement on nonprompt background rejection
  - Better control of systematic uncertainties
- ttH process allowed to study the top-Higgs interaction, results are in good agreement with the SM
  - CP violation in the Higgs sector also studied
- $t\bar{t}W$  cross section observed to be above predictions  $\rightarrow$  need to improve modelling of this process
- Amount of data available also allows to perform differential measurements of both ttH and ttW processes → coming soon!



# Strategy

- Data taken by the CMS experiment at 13 TeV during Run 2 (138 fb<sup>-1</sup>).
- Using multilepton final states, categorize events depending on the lepton multiplicity
  - For ttH analysis 12 categories (focusing on the 3 most sensitive)
- Select isolated muons from H, W and tau decays is crucial in this analysis
  - Use a dedicated MVA to distinguish those leptons form nonpromt leptons -> reduce one of the main backgrounds
- Dedicated selection on each category:

| ttH          |                                                             |                | t                    | ttW       |     |
|--------------|-------------------------------------------------------------|----------------|----------------------|-----------|-----|
|              | 2lss+0tau                                                   | 2lss +1<br>tau | 31                   | 2lss+0tau | 31  |
| nJets        | ≥                                                           | 2              | ≥ 3                  |           | ≥ 2 |
| nbtag        | $\geq 1$ medium b-tagged Jet or $\geq 2$ loose b-tagged Jet |                |                      |           |     |
| MET          | > 30                                                        | GeV            | >30 *<br>> 45 GeV ** | >30 GeV   | -   |
| $\sum q_l^i$ |                                                             |                | ±1                   | ±1        | ±1  |
|              | Veto os leptons within Z peak (10 GeV mass window)          |                |                      |           |     |

After selection still dominated by background  $\rightarrow$  Use NN to classify events

#### ttH categories



### ttH syst

| Source                                                | $\Delta\mu_{\rm t\bar{t}H}/\mu_{\rm t\bar{t}H}[\%]$ | $\Delta\mu_{\rm tH}/\mu_{\rm tH}[\%]$ | $\Delta\mu_{\rm t\bar{t}W}/\mu_{\rm t\bar{t}W}[\%]$ | $\Delta \mu_{t\bar{t}Z}/\mu_{t\bar{t}Z}$ [%] |
|-------------------------------------------------------|-----------------------------------------------------|---------------------------------------|-----------------------------------------------------|----------------------------------------------|
| Trigger efficiency                                    | 2.3                                                 | 8.1                                   | 1.2                                                 | 1.9                                          |
| e, $\mu$ reconstruction and identification efficiency | 2.9                                                 | 7.1                                   | 1.7                                                 | 3.2                                          |
| $\tau_{\rm h}$ identification efficiency              | 4.6                                                 | 9.1                                   | 1.7                                                 | 1.3                                          |
| b tagging efficiency and mistag rate                  | 3.6                                                 | 13.6                                  | 1.3                                                 | 2.9                                          |
| Misidentified leptons and flips                       | 6.0                                                 | 36.8                                  | 2.6                                                 | 1.4                                          |
| Jet energy scale and resolution                       | 3.4                                                 | 8.3                                   | 1.1                                                 | 1.2                                          |
| MC sample and sideband statistical uncertainty        | 7.1                                                 | 27.2                                  | 2.4                                                 | 2.3                                          |
| Theory-related sources affecting acceptance           | 4.6                                                 | 18.2                                  | 2.0                                                 | 4.2                                          |
| and shape of distributions                            |                                                     |                                       |                                                     |                                              |
| Normalization of MC-estimated processes               | 13.3                                                | 12.3                                  | 13.9                                                | 11.3                                         |
| Integrated luminosity                                 | 2.2                                                 | 4.6                                   | 1.8                                                 | 3.1                                          |
| Statistical uncertainty                               | 20.9                                                | 48.0                                  | 5.9                                                 | 5.8                                          |

#### ttW syst

| Source                         | Uncertainty [%] |  |  |
|--------------------------------|-----------------|--|--|
| Experimental uncertainties     |                 |  |  |
| Integrated luminosity          | 1.9             |  |  |
| b tagging efficiency           | 1.6             |  |  |
| Trigger efficiency             | 1.2             |  |  |
| Pileup reweighting             | 1.0             |  |  |
| L1 inefficiency                | 0.7             |  |  |
| Jet energy scale               | 0.6             |  |  |
| Jet energy resolution          | 0.4             |  |  |
| Lepton selection efficiency    | 0.4             |  |  |
| Background uncertainties       |                 |  |  |
| ttH normalization              | 2.6             |  |  |
| Charge misidentification       | 1.6             |  |  |
| Nonprompt leptons              | 1.3             |  |  |
| VVV normalization              | 1.2             |  |  |
| tTVV normalization             | 1.2             |  |  |
| Conversions normalization      | 0.7             |  |  |
| $t\bar{t}\gamma$ normalization | 0.6             |  |  |
| ZZ normalization               | 0.6             |  |  |
| Other normalizations           | 0.5             |  |  |
| tTZ normalization              | 0.3             |  |  |
| WZ normalization               | 0.2             |  |  |
| tZq normalization              | 0.2             |  |  |
| tHq normalization              | 0.2             |  |  |

#### Modeling uncertainties t<del>t</del>W scale 1.8 tTW color reconnection 1.0 ISR & FSR scale for tTW 0.8 $t\bar{t}\gamma$ scale 0.4VVV scale 0.3 t**t**H scale 0.2 Conversions 0.2 Simulation statistical uncertainty 1.8 Total systematic uncertainty 5.8

## **Htt coupling**

- $\kappa_t = y_t / y_t^{SM}$  in good agreement with SM
- tH sensitive to the relative sign of kv kt
  - BSM yt =-1 $\rightarrow$  constructive interference  $\rightarrow \sigma_{tH} \sim 0.8$  pb (10 times greater than in the SM)



#### **CP** interpretation

CMS

Best Fit: κ, = 0.9, κ, = 1.0

ttH (CP-even)

tHq (CP-even)

ttH (CP-odd)

tHW (CP-even)

tHq (CP-odd)

I VH

tHW (CP-odd)

l ttW

1ttZ

Diboson

Rares

Data

Kinematic differences between ttH CP-even and CP-odd components are exploited  $\rightarrow$  dedicated BDT in each of the 3 most sensitive ttH enriched categories

Inputs: momentum of leptons and jets, angular variables, mases, object multiplicities and a specific tagger targeting hadronic top quark decays.



Events

45

35

138 fb<sup>-1</sup> (13 TeV

Nonprompt

🕅 Total unc.

Charge mism.

#### **CP** interpretation

Yields are parametrized using:

•  $\kappa_t$  and  $\tilde{\kappa_t}$  (ratio of the CP-even and CP-odd terms to SM expectation, respectively)



 $|f_{CP}^{Htt}| = 1$  excluded with 3.7 $\sigma$ 

#### ttH diff/EFT

Neural Network for  $p_T^H$  regression input variables:

Neural Network for  $p_T^H$  regression input variables:

| Input                                               | Number of Variables | Which Channels            |
|-----------------------------------------------------|---------------------|---------------------------|
| $l_1(p_{\mathrm{T}},\eta,\phi)$                     | 3                   | 2 <i>lss</i> & 3 <i>l</i> |
| $l_2(p_{\rm T},\eta,\phi)$                          | 3                   | 2lss & 3l                 |
| $l_3(p_{\rm T},\eta,\phi)$                          | 3                   | $3\ell$                   |
| $t_{had}(p_{\mathrm{T}},\eta,\phi)$                 | 3                   | 2lss & 3l                 |
| thad BDT Score                                      | 1                   | 2lss & 3l                 |
| $E_T^{miss}$                                        | 1                   | 2lss & 3l                 |
| $\phi_{E_T^{miss}}$                                 | 1                   | 2 <i>lss</i> & 3 <i>l</i> |
| $\sum_{n=1}^{5} j_n(p_{\mathrm{T}},\eta,\phi)$      | 3                   | 2 <i>lss</i> & 3 <i>l</i> |
| $\sum_{n>5} j_n(p_{\mathrm{T}},\eta,\phi)$          | 3                   | 2 <i>lss</i> & 3 <i>l</i> |
| $\sum_n j_n + \sum_n l_n(p_{\mathrm{T}},\eta,\phi)$ | 3                   | 2ℓss & 3ℓ                 |
| Total                                               | 21                  | -                         |

Table 19: Input variables to DNN used for  $p_{\rm T}$  regression.

| Name | Operator                                                                                                                            | Comments                                  |
|------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| ctp  | $\overline{\mathbf{q}}_{i}\mathbf{u}_{j}\tilde{\boldsymbol{\phi}}\left(\boldsymbol{\phi}^{\dagger}\boldsymbol{\phi}\right)$         | Effects on tHq                            |
| cpt  | $\left(\phi^{\dagger} \overleftrightarrow{iD}_{\mu} \phi\right) \left(\overline{\mathbf{u}}_{i} \gamma^{\mu} \mathbf{u}_{j}\right)$ | Effects on ttH, ttW, ttZ, and tZq         |
| cptb | $\left(\tilde{\phi}^{\dagger}iD_{\mu}\phi\right)\left(\overline{\mathbf{u}}_{i}\gamma^{\mu}\mathbf{d}_{j}\right)$                   | Effects on tHqand tZq                     |
| ctG  | $\left(\overline{\mathbf{q}}_{i}\sigma^{\mu\nu}T^{A}\mathbf{u}_{j}\right)\widetilde{\phi}G^{A}_{\mu\nu}$                            | Effects on every process with a top quark |
| cpG  | $(\phi^{\dagger}\phi)G^{A}_{\mu\nu}G^{A\mu\nu}$                                                                                     | Effects on every QCD process              |

### ttW diff/EFT

We are exploring several observables

- Number of jets
- HT (scalar sum of jet pt)
- Number of b-jets
- Leading b-jet pt
- Leading lepton pt
- Minimum  $\Delta R$ (leading lepton, jet)
- $\Delta R(leptons)$
- Maximum | η( lepton) |
- Leading lepton pt and eta
- Leading jet pt
- Leading b-jet pt
- Number of jets
- Δη(II)

### Introduction

**Aim:** Study the production of a top antitop quark pair produced in association with a H or W boson using full run 2 dataset (13 TeV,138 fb<sup>-1</sup>)

 $t\bar{t}H$  allows to study directly the Yukawa coupling

- y<sub>t</sub> ~ 1
- BSM physics could introduce modified couplings, in particular CP-violating coupling

Will summarize the studies from <u>EPJC 81, 378 (2021)</u> and <u>JHEP 07 (2023) 092</u>

ttw production is one of the main background for ttH, tttt ...

- Measured  $\sigma(t\bar{t}W)$  consistently above theory value (both in ATLAS and CMS)
- Active discussion about the modelling of this background

Will summarized the studies from <u>JHEP 07 (2023) 219</u>





