XV CPAN DAYS

A Monte Carlo Study of Different LET Definitions using PENH

Daniel Puerta Marta Anguiano Wilfredo González Antonio M. Lallena

UNIVERSIDAD DE GRANADA

UNIVERSIDAD DE MÁLAGA

- * Growth of proton therapy.
- * Biological effect may not only be given by physical dose.

* Only defined for a determined particle with specific energy.

Protontherapy

* (Unrestricted) **linear energy transfer (LET)** = Electronic Stopping Power = $\frac{dE}{dz}$

* Average of LET needed for many particles.

* In our previous studies, we used the intuitive formulas:

$$\bar{L}_t(z) = \frac{\int \phi_E(z) \ S(E) \ dE}{\int \phi_E(z) \ dE}$$

* Analytical formulas available (Wilkens et al., 2003).

$$\bar{L}_d(z) = \frac{\int \phi_E(z) \ S^2(E) \ dE}{\int \phi_E(z) \ S(E) \ dE}$$

Monte Carlo Simulations

* Monte Carlo simulations are the gold standard in radiation transport.

* Source of uncertainty for treatment's biological effect.

* Different options to implement LET averages. -> No consensus (Kalholm, 2021)

Implementations Considered

$$\bar{L}_t(z) = \frac{\sum_{E_i} \phi_{E_i}(z) S(E_i) \Delta E}{\sum_{E_i} \phi_{E_i}(z) \Delta E}$$

$$\bar{L}_d(z) = \frac{\sum_{E_i} \phi_{E_i}(z) \ S^2(E_i) \ \Delta E}{\sum_{E_i} \phi_{E_i}(z) \ S(E_i) \ \Delta E}$$

* ϕ_{E_i} : proton energy spectrum.

* $S(E_i)$: electronic stopping power.

* Implicit assumption:

$$D(E_i) = \phi_{E_i} \cdot S(E_i)$$

Implementations Considered

Previous formulas have issues.

* Here (Granville et al., 2015):

$$\bar{L}_t = \frac{\sum_{i}^{N} dx_i S_i(E)}{\sum_{i}^{N} dx_i}$$

* We will test them and compare with TOPAS and FLUKA.

 $\bar{L}_d = \frac{\sum_{i}^{N} e_i S_i(E)}{\sum_{i}^{N} e_i}$

Benchmarking

Self consistency tests.

1. Nuclear reactions suppressed.

2. Full calculations.

Comparison with previous Monte Carlo studies.

7

MC Codes Comparison

Type of beam

Energies

Geometry

Voxelization

Cutoffs protons

Quantity

Unrestricted LET in water. Only protons contribute.

Simulation Details

TOPAS, FLUKA

Pencil beam

75, 160, 250 MeV

1 cm x 1cm x (7, 30.1, 50) cm

1 cm x 1 cm x (0.07, 0.2, 0.2) cm

0.025 MeV

Nuclear Reactions Suppressed

Example

z (cm)

Full Calculations

Difference between implementations is lower for Lt.

Upshot

* Granville et al., 2015.

* Cortés-Giraldo et al., 2015.

* Grassberger et al., 2011.

* Wilkens et al., 2003.

Replication of Previous Studies

Cortés-Giraldo et al., 2015 - Figure 5 (bottom)

* Gaussian beam in energy and spatial distribution. $(\bar{E} = 160 \text{ MeV}; \sigma_E = 1.04)$ MeV)

* Only electronic contribution to dose considered.

2⁵ 2⁴ 2³ Ld (keV / µm) 2² 2¹ 20 0.0

*	PENH
Ţ	ΤΟΡΛς

Cortés-Giraldo et al., 2015 - Figure 5 (bottom)

31

* Gaussian beam in energy and spatial distribution.

* Only electronic contribution to dose considered.

- * Implemented a new format of LET calculation in PENH.
- * Lt results are more stable.

* All codes' implementations reproduce previous studies' behaviour.

Extra Slides

References

- Med Biol. 2014 Nov 21;59(22):R419-72.
- Oncology (Vol. 161, pp. 211–221). Elsevier BV, (2021).
- * [3] Wilkens and Oelfke, "Analytical linear energy transfer calculations for proton therapy". Med Phys. 2003 May;30(5):806-15.
- N283.
- * [5] M. A. Cortés-Giraldo and A. Carabe, "A critical study of different Monte Carlo scoring methods of dose average linear-energy-transfer maps calculated in voxelized geometries irradiated with clinical proton beams" 2015 Phys. Med. Biol. 60 2645
- Barcelona 2018; F. Salvat and J. M. Quesada, Nucl. Ins. Meth. Phys. Res. B 475 (2020) 49.
- * [7] G. Batistone, "The FLUKA code", Annals of Nuclear Energy 82 (2015) 10.
- * [8] J. Perl et al, "TOPAS: an innovative proton Monte Carlo platform for research and clinical applications", Med. Phys. 39 (2012) 6818.
- Issue 11, pp. 6234–6247).

* [1] Paganetti, "Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer". Phys

* [2] Kalholm, F., Grzanka, L., Traneus, E., & Bassler, N. "A systematic review on the usage of averaged LET in radiation biology for particle therapy". In Radiotherapy and

* [4] D. A. Granville and G. O. Sawakuchi, "Comparison of linear energy transfer scoring techniques in Monte Carlo simulations of proton beams" 2015 Phys. Med. Biol. 60

* [6] F. Salvat, J.M. Fernández-Varea and J. Sempau, "Penelope 2018: a code system for Monte Carlo simulation of electron and photon transport", Nuclear Energy Agency,

* [9] Guan, F., et al.. (2015). "Analysis of the track- and dose-averaged LET and LET spectra in proton therapy using the geant4 Monte Carlo code". In Medical Physics (Vol. 42,

Granville et al., 2015 - Figure 2 a)

Grassberger et al., 2011 - Figure 2 (All Protons)

16

14

12

10 -

8

6

4

2

0

-d (keV / µm)

* Gaussian beam in energy, spatial distribution and direction.

* Differences observed at the peak.

Ld Distributions - All Protons

PE	N	Η

- TOPAS
- **FLUKA**
- Grassberger et al., 2011

Grassberger et al., 2011 - Figure 2 (Primaries Only)

Differences observed at the peak.

Ld Distributions - Only Primaries

- PENH
- TOPAS
- FLUKA
- Grassberger et al., 2011

- Wide beam, gaussian energy.
- * Shift of data needed.

LET Distributions - 160 MeV, $\sigma = 0.5$ MeV

- PENH
- + TOPAS
- FLUKA
- Wilkens et al., 2003

25

20

- Lt / Ld (keV / µm) 10
 - 5
 - 0 -

- * Wide beam, gaussian energy.
- * Shift of data needed.

LET Distributions - 70 MeV, $\sigma = 0.5$ MeV

- * Wide beam, gaussian energy.
- * Shift of data needed.

LET Distributions - 70 MeV, $\sigma = 0$ MeV

- * Wide beam, gaussian energy.
- * Shift of data needed.

LET Distributions - 70 MeV, $\sigma = 2$ MeV

Simulation PENH Parameters

Absorption energy for electrons and positrons Absorption energy for photons

WCC, WCR

C1, C2, C1H, C2H

Absorption energy for neutrons

C1N, C2N

FNABS

1e9 eV (Previous studies; Guan et al., 2015)

1e4 eV 1e5 eV 0.05 1e4 eV 0

0.8

42

Analytical Formula

*
$$LET_d = \frac{\int_0^\infty \phi_r(z) S^2(r) dr}{\int_0^\infty \phi_r(z) S(r) dr}$$

*
$$\phi_r(z) = \frac{\Phi_0}{\sqrt{2\pi\sigma}} e^{-(r - (R_0 - z))^2/2\sigma^2}$$

*
$$S_R(r) = \frac{1}{R\alpha^{1/p}} \left[(r+R)^{1/p} - r^{1/p} \right]$$

Analytical Formula

*
$$LET_d(z) = \frac{\langle S^2(z) \rangle}{\langle S(z) \rangle}$$

$$\langle S(z) \rangle = \frac{\Phi_0}{\sqrt{2\pi\sigma}R\alpha} \left[\sigma^{1+1/p} \Gamma\left(1+\frac{1}{p}\right) \tilde{D}_{1+1/p}(\epsilon,\zeta) - R\left(\frac{1}{2}R\right)^{1/p} e^{-(\epsilon+\zeta)^2/8} \right]$$

$$\langle S^2(z) \rangle = \frac{\Phi_0}{\sqrt{2\pi}\sigma R \alpha^{2/p} p(2-p)} \left[\sigma^{2/p} \Gamma\left(\frac{2}{p}\right) \tilde{D}_{2/p}(\epsilon,\zeta) - 2\left(\frac{1}{2}R\right)^{2/p} e^{-(\epsilon+\zeta)^2/8} \right]$$

*
$$\tilde{D}_{v}(\epsilon, \zeta) = e^{-\epsilon^{2}/4} D_{-v}(\epsilon) - e^{-\zeta^{2}/4} D_{-v}(\zeta)$$

*
$$\zeta = (z - R_0)/\sigma$$
 $\epsilon = (z - R_0 - R)/\sigma$

-> Problem for "small" z because D_v gives huge values.

* Two most common averages definitions (ICRU, 1970):

$\bar{L}_t = \int Lt(L) \, dL$

$\bar{L}_d = \int L \, d(L) \, dL$

Ingredients

$$\bar{L}_t(z) = \frac{\sum_{E_i} \phi_{E_i}(z) S(E_i) \Delta E}{\sum_{E_i} \phi_{E_i}(z) \Delta E}$$

$$\bar{L}_d(z) = \frac{\sum_{E_i} \phi_{E_i}(z) \ S^2(E_i) \ \Delta E}{\sum_{E_i} \phi_{E_i}(z) \ S(E_i) \ \Delta E}$$

* ϕ_{E_i} : proton energy spectrum.

* $S(E_i)$: electronic stopping power.

* Implicit assumption:

$$D = \phi_{E_i} \cdot S(E_i)$$

Ingredients

 $\bar{L}_t = \frac{\sum_{i}^{N} dx_i S_i(E)}{\sum_{i}^{N} dx_i}$

 $\bar{L}_d = \frac{\sum_{i}^{N} e_i S_i(E)}{\sum_{i}^{N} e_i S_i(E)}$ $\sum_{i} e_{i}$

- * dx_i : length of simulation step.
- * e_i : energy deposited in step.
- * $S_i(E)$: stopping power of particle depositing energy.

Correcting TOPAS? (Cortés-Giraldo et al., 2015)

Correcting TOPAS? (Cortés-Giraldo et al., 2015)

* Using a different stopping power $S_i(E)$ seems to give more stable results.

Definition of Dose (ICRU 85)

* Absorbed dose: $D = \frac{d\overline{\epsilon}}{dm}$

* $\epsilon = \epsilon_{in} - \epsilon_{out} + Q$

depend only on the set of initial ionizing particles released during the irradiation, and the geometry."

* Grussell, 2014: "A desirable property of the absorbed dose is that it should

Consistency Results

No Nuclear Reactions

58

Full Calculations

67

