Time-Of-Flight based muography using LGAD sensors

F. Arteche, C. Fleta, D. Flores, J. Galindo, G. Gómez, S. Hidalgo, M. Iglesias, P. Martínez, F. Matorras, A. Merlos, A. Molina, A. Pradas, I. Vila

XV CPAN Days

Cosmic Muons as Radiography source

- Cosmics rays hitting the outermost layers of the atmosphere produce muons (pion decays)
- Muon momentum spectrum peaks at low values (~1 GeV) falling quickly right after
 - Although cosmic rays and cosmic muons can be surprisingly energetic occasionally
- > Angular distribution of muons follows approximately a $\cos 2(\theta)$ with the vertical
- Muon flux is approximately constant and equal to roughly 10000 muons per minute and m2

Muon Tomography

- Cosmics muons interact with matter mostly through energy loss and multiple scattering
- ▶ When crossing matter -> the denser the matter the more energy loss and angular deviation
- > This opens the floor for using cosmic muons as a density testing tool

Absorption muon tomography

- Muon flux measured vs direction (attenuation)
- One single detector needed
- Need large object + long exposure times
- Typical applications:geology, volcanology, etc

Scattering muon tomography

- Muon angular deviation (scattering)
- Two detectors needed
- Small-medium size objects + short exposure times
- Typical applications: border security, nuclear, etc

Muon Tomography in the industry

- Idea: use muon tomography as a Non-Destructive Testing (NDT) technique in the industry
 - Preventive maintenance of equipment (estimation of the degratation)
 - Quality control of the production process (measurement of liquid interfaces, tolerances, etc)
 - Risk assessment and evaluation (continuos monitoring of structural integrity)
- Muography has some unique properties than can be very useful for these applications
 - Large power of penetration (no problema to deal with several meters of steel)
 - ➢ No need to physically "touch" the object -> can be applied to equipment in production

Muography in the industry: a few examples

Pipe

corrosion

Measure of the wear: 1mm resolution 1 min exposure

Cracks in concrete

Measure of the crack size: 2mm resolution 10 min exposure time

Prestressed concrete

Furnace hearth

Measure of the wall refractory: 1cm resolution 15 min exposure

Real data 3D reconstruction of a silicon smelting furnace

P. Martínez/IFCA

The problem of the momentum

- Muon momentum operates with an intrinsic assumption in the reconstruction algorithms
 - Muon momentum is assumed to be known and equal to the most probable value
- > The momentum plays an important role in Molière's scattering formula

$$\theta_0 = \frac{13.6}{\beta c p} z \sqrt{x/X_0} \left[1 + 0.038 \ln(x/X_0) \right]$$

- > There's entanglement between the momentum and the material radiation lenght
 - > This produces a degradation of the resolution of the images
- > On the other hand, measuring the muon momentum is not an easy task (in a cost-effective manner)

Time-Of-Flight momentum measurement

- Muon momentum can be estimated directly through the Time-Of-Flight of the muon
 - ➢ Need to estimate the muon time at the upstream and downstream detectors

- > Two layers of detectors with timing capabilities are needed in order to measure T2-T1
- **>** Low Gain Avalanche Diodes (LGADs) are a perfect match for this task

LGADs as timing detectors in CMS

- > The MIPs Timing Detector (MTD) is part of the Phase-2 upgrade Project in CMS
 - Provide time measurement of charged particles with 30-40 ps resolution
 - Endcap Timing Layer (ETL) using LGAD technology
 - Large involvement from CNM, IFCA and ITAINNOVA

BTL: LYSO bars + SiPM read-out

- TK/ECAL interface ~ 45 mm thick
- $|\eta| < 1.45$ and $p_T > 0.7 \text{ GeV}$
- Active area ~ 38 m^2 ; 332k channels
- Fluence at 3 ab^{-1} : $2x10^{14} n_{eq}/cm^2$

ETL:Si with internal gain (LGAD)

- \bullet On the HGC nose ~ 65 mm thick
- $1.6 < |\eta| < 3.0$
- Active area ~ 14 m²; 8.5M channels
- Fluence at 3 ab^{-1} : up to $2x10^{15} n_{eq}^{2}/cm^{2}$

P. Martínez/IFCA

MS

The 4D-TOMULGAD project

> Target: build a muography demonstrator with Time-Of-Flight momentum measurement capabilities

Stakeholders PDC2021-121718: 2 years project Optimization and fabrication of LGAD sensors svstems j F (A Ssidenor Instituto de Física de Cantabria Integration, validation and 4D muon image reconstruction erroglobe Distributed Clock network and power

distribution system

TOMULGAD goals and status

STATUS:

Small-area technological demonstrator and experimental assessment of the feasibility of a large scale muon tomograph

Instituto de Física de Cantabria

- Manufacturing and characterization LGAD sensors for the technological demonstrator
- > Integration of a small-area technological demonstrator with full capabilities
 - Sensors and readout electronics (large delays, first testbeams taking place now)
 - Reconstruction and simulation software
 - Powering and clock distribution system
 - DAQ and final integration (need readout electronics)
- > Development of a high-resolution Deep Learning reconstruction algorithm using timing information

Low-Gain Avalanche Diodes at CNM

- Traditional silicon detectors with extra multiplication layer and gain in the range ~ 10 20
- Relatively large sensors 21.2 x 21.2 mm² \geq
- >Thickness of 300 µm (50 µm depletion region)
- Pads of $1.3 \times 1.3 \text{ mm}^2$ in 16x16 matrix fashion \succ
- Excellent timing capabilities of ~ 50 ps \geq
 - Time resolution mainly dependent on jitter and time-walk
- Readout using dedicated ASIC (ETROC2): versión 2 curently being tested in test beams \geq

E field Traditional Silicon detector

Ultra Fast Silicon Detector E field

P. Martínez/IFCA

LGAD characterization

> LGAD sensors extensively tested and characterized through different sensor production campaigns

Standard, CNM, RT

Standard, CNM, RT

Simulation software and reconstruction

- > A full GEANT4 model of the telescope has been made with 4 LGAD sensors per layer
 - Final geometry still under optimization waiting for final performance numbers
- > Full simulation setup deployed including detailed digitization model with timing resolution
 - Multipad 16x16 structure of LGADs implemented logically in the digitization
 - > Deposited energy from GEANT4 is converted into charge and multiplied by the gain
 - Signal shape scaled by the charge to estimate the Time-Of-Arrival and Time-Over-Threshold
 - > Possibility to randomly simulate spurious hits and cross-talk among sensors

Timing resolution model in digitization

- Time resolution components are modeled in different ways
 - ➤ Landau fluctuations on the deposited energy are accounted for automatically
 - > The jitter is gain-dependent and simulated as a gaussian smearing
 - > The TDC and the distorsion are simulated as gaussian smearing with constant sigma
 - Landau noise simulated as a gaussian smearing with sigma dependent on muon energy

Time-walk corrections implemented right after digitization process

Clock distribution and sync for 4D detectors

- ▶ Need to measure time of arrival of distant 4D detector planes with respect to a clock
- > Depending on the application or the setup there might be different clock paths
- Move from dedicated clocking technologies requiring calibration to self-calibrated technologies
- > The White Rabbit Project originated for High Accuracy Profile under the IEEE 1588 standard
 - Ethernet-based technology for deterministic distribution of timing data

TOF computation in 4D detectors

P. Martínez/IFCA

Muon imaging with 4D capabilities

- Classic muography algorithms adapted to consider timing in reconstruction
 - Point-Of-Closest Approach (POCA) algorithm with time modulation
 - > Time Maximum-Likelihood Expectation Maximization (MLME) with modern minimization
- Development of automatic Detection + Segmentation based on artificial vision algorithms
 - Training of YOLO v8 with MLME muographic images with timing

Example: transversal view of furnace

POCA with Timing

Furnace Wall mask

Semantic segmentation

P. Martínez/IFCA

Conclusions

- > Muon tomography can be applied as an NDT technique of structural integrity in the industry
- > The 4D-TOMUGAD Project is addressing the problema of the momentum measurement
 - Surely a game changer for many applications in the context of muon tomography
- > The project aims at building a demonstrator (TRL4) but considering also scalability
- > The project is now catching up with the readiness of the sensor readout electronics
- > A successful outcome could motivate to build a large scale detector