Optimising the characterization of an AGATA capsule in the SALSA setup by simulation

Gala González Briz

Dña. Begoña Quintana Arnés

XV CPAN DAYS

2 - 6 October 2023

Laboratorio Datación L D Radiaciones Ionizantes R L

Gala González Briz

Characterisation of an AGATA capsule

XV CPAN DAYS

- Introduction: AGATA capsule and spectrometer
- 3D Scanning: SALSA setup
- Ourrent work
- Optimization of scanning by simulation
- Inture perspective

Introduction AGATA spectrometer

- $4\pi \ \gamma$ spectrometer.
- Position-sensitive detectors.
- Electric segmentation technology.
- Tracking to reconstruct the position.
- Efficiency and resolution improvements.

3D Scanning SALSA setup

Main objective of characterization

Building an experimental database which relates the position in the crystal with the pulse shape.

Gala González Briz

Characterisation of an AGATA capsule

XV CPAN DAYS

・ 何 ト ・ ヨ ト ・ ヨ ト

3D Scanning SALSA setup

1 Position in γ -camera: 2D-Adjustment.

Position in AGATA crystal: Tracking algorithms + time matching.

From two positions: intersection of trajectories.

Same pulse shape, same position: PSA.

- 4 回 ト 4 三 ト 4 三 ト

2 Position in AGATA crystal: Tracking algorithms + time matching.

The interaction in the γ -camera and the position of the source provide the one in AGATA.

Time matching is performed to associate the event in AGATA crystal with its respective trajectory.

From two positions: intersection of trajectories.

Same pulse shape, same position: PSA.

・ 同 ト ・ ヨ ト ・ ヨ ト

3D Scanning SALSA setup

- Position in γ-camera: 2D-Adjustment.
- Position in AGATA crystal: Tracking algorithms + time matching.
- S From two positions: intersection of trajectories.

The intersection of the trajectories from two different spatial configurations gives the interaction point in the AGATA crystal, the sought position.

Same pulse shape, same position: PSA.

- Position in γ -camera: 2D-Adjustment.
- Position in AGATA crystal: Tracking algorithms + time matching.
- From two positions: intersection of trajectories.
- Same pulse shape, same position: PSA.

PSA techniques based on the idea that a specific interaction position in AGATA produces a unique set of pulses in the segments. Induced signals are generated in adjoining segments.

Current work

() System set-up: γ -camera, electronics.

Iracking algorithms and analysis software.

Simulation to optimise the scanning.

イロト イボト イヨト イヨト

э

Optimization of scanning by simulation

Positions and angular distribution

Rotation is required.

N = 6000000							
ÁNGULO 0º		SEGMENT					
		1	2	3	4	5	6
	1	0,419	1,425	2,781	2,306	1,244	0,405
	2	0,447	1,621	3,549	3,410	1,565	0,419
euree	3	0,713	2,292	5,632	5,590	2,166	0,601
SLICE	4	0,783	3,354	7,909	6,917	2,739	0,852
	5	0,769	3,200	8,217	7,029	3,088	0,922
	6	0,461	2,404	6,610	5,310	2,012	0,838
ÁNGULO 90º		SEGMENT					
		1	2	3	4	5	6
SLICE	1	1,999	2,504	1,823	0,527	0,395	0,659
	2	2,746	3,735	2,592	0,439	0,483	0,857
	3	4,855	5,624	3,888	0,813	0,769	1,186
	4	6.525	8,194	5.075	1.186	0.791	1.736

ÁNGULO 120º		SEGMENT					
		1	2	3	4	5	6
	1	2,804	2,728	1,327	0,501	0,401	0,976
	2	3,104	3,755	1,352	0,375	0,626	1,477
e1100	3	5,607	5,307	2,228	0,501	0,676	2,103
SLICE	4	8,085	7,384	2,503	0,876	1,051	2,929
	5	7,935	7,785	2,904	0,876	0,901	3,104
	6	5,507	6,834	1,852	0,501	0,701	2,428

3 625

4 438

< 行

ÁNGULO 210º		SEGMENT					
		1	2	3	4	5	6
	1	2,444	0,783	0,439	0,376	0,595	2,695
	2	3,729	1,285	0,752	0,439	0,439	3,855
e1100	3	5,954	2,100	0,971	0,564	0,627	7,082
SUCE	4	8,273	2,946	1,128	0,721	0,752	9,307
	5	8,775	3,008	1,254	0,564	0,877	9,809
	6	7,051	1,880	0,940	0,439	0.627	6,518

1.428

1.516

Optimization of scanning by simulation Casuistry: number of Comptons and photoelectric processes

Case	N. Compton	N. Ph. Absorp.	Incidence * (N/NT *1000)	Incidence ** (N/NT *1000)
0	0	1	0,341	0,266
1	1	0	1,849	0
2	1	1	0,746	0,377
3	2	0	0,890	0
4	2	1	0,943	0,324
5	3	0	0,370	0
6	3	1	0,762	0,179
7	4	0	0,137	0
8	4	1	0,459	0,082
9	5	0	0,047	0
10	5	1	0,204	0,023
11	6	0	0,011	0
12	6	1	0,082	0,007
13	7	0	0,003	0
14	7	1	0,022	0

N = 6000000 events.

* Coincidence.

** Coincidence, 511 keV, one segment.

Characterisation of an AGATA capsule

Future perspective

- Measuring stage, after cooling and vacuuming of the capsule.
- Development of algorithms for data analysis.
- Experiment to test the shape of the pulses in the segments when 511 keV are deposited on the AGATA detector (equivalent to photoelectric effect).

Thank you very much

for your attention

AADAZIONI IONIZZIANTI Iscolo di contaminazione

Gala González Briz

Characterisation of an AGATA capsule

XV CPAN DAYS