

⁵⁰Cr(n,γ) cross section measurement at HiSPANoS@CNA

P. PÉREZ-MAROTO, C. GUERRERO, A. CASANOVAS, M.E. STAMATI,B. FERNÁNDEZ, N. PATRONIS & THE N_TOF COLLABORATION.

XV CPAN DAYS, SANTANDER. 02/10/2023

Motivation: nuclear data for criticality safety

NEA Nuclear Data High Priority Request List, HPRL

Requester: Dr Roberto CAPOTE NOY at IAEA, AUT Email: roberto.capotenoy@iaea.org

Project (context):

Impact:

Neutron absorption in the Cr isotopes of structural materials affects the criticality of fast reactor assemblies [Koscheev2017]. These cross sections are also of interest for stellar nucleosynthesis [Kadonis10].

Accuracy

8-10% in average cross-sections and calculated MACS at 10, 30, 100 keV.

Selected criticality benchmarks with large amounts of Cr. (e.g., PU-MET-INTER-002, and HEU-COMP-NITER-005/4=KBR-15/Cr) show large criticality changes of the order of 1000 pcm due to 30% change in Cr-53 capture in the region from 1 keV up to 100 keV [Trkov/2018]. On the other side different evaluations (e.g., BROND-3.1, ENDF/B-VIII.1, ENDF/B-VIII.0 and JEFF-3.3) for Cr-53(n,g) are discrepant by 30% in the same energy region. For Cr-50, evaluated files show better argreement at those energies but they are lower than Mughashab evaluation of the resonance integral by 35%. These discrepancies are not reflected in estimated uncertainty of the evaluated files (e.g., JEFF-3.3 uncertainty is around 10% which is inconsistent with the observed spread in evaluations). Due to these differences we request new capture data with 8-10% uncertainty to discriminate between different evaluations and improve the C/E for benchmarks containing Chromium and/or SS.

Justification document

Criticality benchmarks can test different components of stainless steel (SS), including Cr which is a large component of some SS. Currently, a large part of the uncertainty in SS capture seems to be driven by uncertainty in Cr capture [Koscheev2017]. Indeed, some benchmarks highly sensitive to Cr (as a component of SS) indicate a need for much higher capture in Cr for both Pu and U fueled critical assemblies (e.g., HEU-COMP-INTER-005/4=KBR-15/Cr and PU-MET-INTER-002=ZPR-6/10).

- Stainless Steel is often used as a **structural material in nuclear reactors** and contains between **11-26% of chromium**.
- There are serious discrepancies (~30%) between the different evaluated data of ⁵⁰Cr and ⁵³Cr capture cross section, which is not present in the corresponding estimated uncertainties.
 - **OECD NEA-HPRL** (High Priority Request List) $\rightarrow \frac{50,53}{Cr(n,\gamma)}$ within 8-10% at 1 to 100 keV.

Why the discrepancies?

- The main challenge for measuring $Cr(n,\gamma)$ is the large neutron multiple-scattering effects
- In the previous measurements very thick samples were used, aiming for good statistics in a very wide energy range

$$Y_0 = (1 - e^{n\sigma_t})\frac{\sigma_t}{\sigma_t}$$

Capture yield $\rightarrow Y = Y_0 + Y_1 + Y_2 + Y_3 \dots$ (captures/neutron) Analytical

(accurate)

(barns)

Cross

Numerical

(aproximate)

How to improve $\sigma(n,\gamma)$ down to a few %?

Time-of-flight measurement → n_TOF@CERN (Geneva, Switzerland) with very thin samples to minimize multiple-scattering effects

How to improve $\sigma(n,\gamma)$ down to a few %?

- Time-of-flight measurement → n_TOF@CERN (Geneva, Switzerland) with very thin samples to minimize multiple-scattering effects
- ⁵⁰Cr activation measurement → HiSPANoS@CNA (Seville, Spain). MACS at 30 and 90 keV

- A 30 keV quasi-Maxwellian spectrum can be "easily" produced by Li(p,n) with E_p=1912 keV.
- How to produce a 90 keV MB spectrum → <u>new</u> <u>technique</u> being tested at CNA.

⁵⁰Cr activation: how to make a 90 keV MB?

- 90 keV spectrum →
 linear combination of
 fluxed obtained from
 different proton
 energies.
- Idea proposed by Reifarth et al., but never implemented.

Reifarth, R. et al, "Neutron-induced cross sections-from raw data to astrophysical rates". The European Physical Journal Plus, 133(10), 424 (2018)

The HiSPANoS@CNA Facility

- HiSPANoS is the neutron facility of CNA.
- Using the 3MV Tandem accelerator we can produce thermal, epithermal and monoenergetic-fast neutrons with the reactions Li(p,n), ²H(d,n) and Be(d,n), mostly.
 - Continuous beam for activations.
 - Pulsed beam for TOF measurements.

M. Macías et al, "*The first neutron time-of-flight line in Spain:* …", Rad. Phys. and Chem. 168 (2020) M. A. Millán-Callado et al., "*Continuous and pulsed fast neutron beams at the CNA HiSPANoS facility*", Rad. Phys. and Chem. (accepted)

⁵⁰Cr activation: set-up

Metallic Li for higher production \rightarrow cooled target

¹⁹⁷Au + ⁵⁰Cr + ¹⁹⁷Au sample

¹⁹⁷Au irradiation for activation checks

- 3 Lithium-glass neutron monitors
- 1 LaBr₃ for ⁷Be decay
- 1 LaBr₃ for ¹⁹⁸Au and ⁵¹Cr decay

Preliminary results

- 28 samples activated with 6 different neutron fluxes (plus the Li target).
- Validation with simulations (SimLit + GEANT4).
- Spectra characterization is not strictly necessary (and is usually not performed).

Preliminary results (TOF measurements)

- Some differences between
 the measured and the
 simulated spectra.
- With the simulations we will obtain the accurate E_p value of the irradiations.
- Differences maybe due to detector resolution function? Bad background subtraction?

Work ongoing...

Preliminary results (¹⁹⁷Au SACS)

Large statistical uncertainties due to ⁷Be build-up: it can be reduced exchanging the Li target between irradiations (next time).

 The SACS are in agreement with the expected values within 12% in the worst case.

$$CS = \frac{1}{n_{at}} \frac{N_{act^{198}Au}}{N_{act^{7}Be}}$$

Preliminary results (197Au MACS)

- ¹⁹⁷Au MACS₃₀ has 50% stat. uncertainty, but only differs 9% from the KADONIS value.
- ¹⁹⁷Au MACS₉₀ agrees within only 6% with the expectation from the evaluation, which is excellent considering that ¹⁹⁷Au(n,γ) is standard in this region.
 - <u>First $\langle \sigma \rangle_{90 keV}$ measurement ever!</u>
- When the ¹⁹⁷Au activations and TOF spectra are perfectly understood, we will apply everything learned to the ⁵⁰Cr MACS_{30,90}
- A lot of work ahead!

Summary & Outlook

- A clear goal: improving the ^{50,53}Cr(n,γ) cross section to 8-10% accuracy at 1-100 keV
- Two experiments:
 - n_TOF@CERN, Summer'22 (H2020-Ariel Scientific Visit).
 - ⁵⁰Cr activation at HiSPANoS@CNA, March'23 (H2020-Ariel Transnational Access).
- Preliminary results show high quality data.
- MACS₉₀ measurement using a new technique \rightarrow preliminary ¹⁹⁷Au test.
- Some discrepancies at the TOF spectra \rightarrow work ongoing.
- Preliminary ¹⁹⁷Au SACS and MACS_{30,90} in agreement with the expected values.
- First time ever MACS₉₀ experimental measurement.
- Everything learned will be apply to the ⁵⁰Cr case (and more nuclei in the future...).

Thank you!

Pablo Pérez Maroto ppmaroto@us.es

Backup. How to improve $\sigma(n,\gamma)$ down to a few %?

- Enriched (expensive and scarce) material with high purity \rightarrow 94,6% ⁵⁰Cr & 97,7% ⁵³Cr
- Controlling multiple-scattering effects:
 - Very thin/thin sample approach
 - C₆D₆ detectors (low sensitivity to scattered neutrons)

Experiment	Beer (1975)	Stieglitz (1971)	Brusegan (1986)	Kenny (1977)	Guber (2011)	This work (2022)
Facility	FZK	RPI	GELINA	ORELA	ORELA	n_TOF
L (m)	0,7	27	60	40	40	185
Energy (keV)	1-300	1-200	1-200	1-200	0,01-600	1-100
<u>Density ⁵⁰Cr</u> (10 ⁻³ at/barns)	<u>18</u>	<u>8</u>	<u>7</u>	<u>5/8</u>	-	0,6/1,9
<u>Density ⁵³Cr</u> (10 ⁻³ at/barns)	<u>14</u>	<u>14</u>	<u>12/60</u>	<u>8/12</u>	14	1,2/6
				Our "thicks" are thinner than all previous → lower multiple interaction corrections		

Backup. Averaged cross section equations

Backup. ⁵⁰Cr activation: preliminary results

Pablo Pérez Maroto || XV CPAN DAYS || 02/10/2023