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Motivation

• Spin polarizations


• Spin correlations


• Entanglement


• Possible violation of Bell inequalities


• Etc

From knowing the helicity density matrix of a quantum state we have access to 
all the spin information of the system, in particular:

Simple and experimentally practical Quantum Tomography is 
highly important!
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Main goal
Determine the initial helicity state  of a general scattering process from the 
angular distribution data of the final particles

ρ

n ≥ 2m ⋮ S ⋮ }Ω
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• Generalize the definition of the production/decay matrix 


• Find the kinematic dependence of both  and the normalized differential 
cross section


• Expand  in terms of  (Irreducible tensor operators) and compute the 
coefficients of the expansion from the previous results 

Γ

Γ

ρ {TL
M}

Steps to follow:

Extra: Re-derivation from Quantum Information perspective 

(Weyl-Wigner-Moyal formalism)
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Basic concepts
• A general quantum system in a Hilbert Space  of finite dimension  is 

described by a  density matrix :
ℋ d

d × d ρ

ρ = ∑
i

pi |ψi⟩⟨ψi | , pi ≥ 0, ∑
i

pi = 1 ⟺ Tr{ρ} = 1

• For N-partite systems  with |ψi⟩ ∈ ℋ = ℋ1 ⊗ ℋ2 ⊗ ⋯ ⊗ ℋN dim ℋi = di

• Expectation values of operators are computed by 

⟨𝒪⟩ρ = Tr{𝒪ρ}
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State representation of relativistic many-
particle systems
We consider a -particle system with fixed  and  such that . 
We distinguish 2 reference frames relevant for the work:

n λi ⃗pi ⃗χ = ∑ ⃗pi = 0⃗

R(φ1, θ1, φ12)−1

R(φ1, θ1, φ12)
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Following this setup, the quantum state of the -particle system is given by n
n

∏
i=1

| ⃗piλi⟩ = D̂(R)
n

∏
i=1

| ⃗πiλi⟩ = |Rπλ⟩

Here  is the unitary representation of ,   are the particle’s helicities and  
are the  spherical coordinates in . 


A more convenient representation is

D̂(R) R λ π
3n − 3 ℛℱ 0

|RE ⃗χκλ⟩ = |Rκλ⟩

 and  fixedE ⃗χ

Now,  is a set of  parameters to be chosen depending on the caseκ 3n − 7
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We are interested in the relation between these states and the ones with definite 
angular momentum :(J, M)

|R κ λ⟩ = ∑
J

∑
M Λ

(J + 1/2)1/2

2π
DJ

M Λ(R) |J M Λ κ λ⟩,

where  is the Wigner D-matrix associated with 
 and  is the projection of the total angular momentum of the system over .

DJ
M Λ(R) δJ, J′ 

= ⟨J M | D̂(R) |J′ M′ ⟩
R Λ ̂p1

With these tools we can move forward to define the production matrix  and to 
compute its elements and kinematic dependence

Γ
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Generalized production matrix Γ
We define the production matrix as:

Γλ̄ λ̄′ 
∝ ∑

λ

ℳλ λ̄ℳ*
λ λ̄′ 

, ℳλ λ̄ = ⟨R κ λ |S | R̄ κ̄ λ̄⟩

with  the so-called helicity amplitudes given in terms of the scattering 
matrix  and the previously introduced quantum states.

ℳλ λ̄
S

We are particularly interested in the transposed matrix , whose simplified 
expression after some algebra is given by

ΓT

ΓT
λ̄ λ̄′ 

∝ ⟨1̄ κ̄ λ̄ | D̂(R̄−1R)[∑
λ

(S† |1 κ λ⟩⟨1 κ λ |S)] D̂(R̄−1R)−1 | 1̄ κ̄ λ̄′ ⟩
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For instance, this implies

ΓT(R̄, R) = ΓT(R̄−1R) = D̂(R̄−1R) ΓT(1) D̂(R̄−1R)−1

We can set the initial configuration as the one defining , hence ℛℱ 0 R̄ = 1̄

ΓT(R̄−1R) = ΓT(R) = D̂(R) ΓT(1) D̂(R)−1, R = R(φ1, θ1, φ12) = R(Ω)

One only needs to compute the elements of  and then rotate the matrix 
accordingly. In general, in the canonical basis 

ΓT(1)

ΓT(R) =
1

aσ σ ∑
σ σ′ 

aσ σ′ 
D̂(R) eσ σ′ 

D̂(R)−1, σ(′ ) = (σ(′ )
1 , …, σ(′ )

m )

aσ σ′ 
= ∑

λ

⟨1̄ κ̄ σ |S† |1 κ λ⟩⟨1 κ λ |S | 1̄ κ̄ σ′ ⟩, aσ σ = ∑
λ

|⟨1 κ λ |S | 1̄ κ̄ σ⟩ |2
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Red. helicity amplitudes
(Specific expressions in def.  rep.)J



Reconstruction of density matrix  ρ

Actually, we first perform an expansion of both  and  over a convenient basis. 
Due to its transformation property under rotations, the optimal one is composed 
by the irreducible tensor operators .

Γ ρ

{TL
M}

In order to develop the quantum tomography, we will make use of the relation 
between ,  and the normalized differential cross section:ρ Γ

1
σ

dσ
dΩ dκ̄ dκ

=
d

8π2K̄K
Tr{ρ ΓT(R)}, K̄ = ∫ dκ̄ and K = ∫ dκ
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As we deal with  particles with spin  each, the dimension of the helicity 
Hilbert space is . 


In particular this fixes the dimensionality of the basis : 

 and . 


The elements of each operator are given by

n si
d = ∏

i

di = ∏
i

(2si + 1)

{TL
M}

L ∈ {0,1,…, (d − 1)} M ∈ {−L, …, L}

[TL
M]σT σ′ T

= (2L + 1)1/2 CsT σT
sT σ′ T L M

where  is an “effective” spin of the whole system: . Another 
important property is

sT d = 2sT + 1

Tr{TL
M (TL′ 

M′ 
)†} = Tr{TL

M (TL′ 

M′ 
)T} = d δL L′ 

δM M′ 
.
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Using the orthogonality condition, we get for any operator

A =
1
d ∑

L M

AL MTL
M,  with AL M = Tr{A (TL

M)†}

Applying this result to eσ σ′ 

Tr{eσ σ′ 
(TL

M)†} = Tr{eσ σ′ 
(TL

M)T} = [TL
M]σT σ′ T

= (2L + 1)1/2CsT σT
sT σ′ T L M

and plugging this expression in (1) leads toΓT

ΓT(1) =
1
d ∑

L σ−
T

B̃L σ−
T
TL

σ−
T
, B̃L σ−

T
≡

(2L + 1)1/2

a+ ∑
σ σ′ 

(σ − σ′ ) ⋅ d(v) = σ−
T

aσ σ′ 
CsT σT

sT σ′ T L σ−
T
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Using the transformation of  under rotations{TL
M}

D̂(R)TL
M′ 

D̂(R)−1 = ∑
M

DL
M M′ 

(R)TL
M ⟹ ΓT(R) =

1
d ∑

L M [∑
M′ 

B̃L M′ 
DL

M M′ 
(R)] TL

M

In this way, we have given the expansion of  and we have factorized the 
kinematic dependence as

ΓT(R)

B̃L M′ 
= B̃L M′ 

(κ̄, κ), DL
M M′ 

(R) = DL
M M′ 

(Ω)

In the same fashion,

ρ =
1
d ∑

L M

AL M TL
M ⟹

1
σ

dσ
dΩ dκ̄ dκ

=
1

8π2K̄K ∑
L M

AL MTr{TL
M ΓT(R)} ⟹

1
σ

dσ
dΩ dκ̄ dκ

=
1

8π2KK̄ ∑
L M

AL M ∑
M′ 

B̃*L M′ 

DL
M M′ 

(R)*
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Finally, from the orthogonality conditions for the Wigner D-matrices we get

∫ dΩ [ 1
σ

dσ
dΩ dκ̄ dκ ] ( 2L + 1

4π )
1/2

DL
M M′ 

(Ω) =
BL M′ 

(κ̄, κ)*
4π

AL M(κ̄)

with 
BL M′ 

(κ̄, κ) ≡ ( 4π
2L + 1 )

1/2 B̃L M′ 
(κ, κ̄)

K̄K

For ,M′ = 0

∫ dΩ [ 1
σ

dσ
dΩ dκ̄ dκ ] YM *

L (Ω) =
BL M′ 

(κ̄, κ)*
4π

AL M(κ̄)

We have accomplished the Quantum Tomography, since from the angular data 
we can obtain  knowing  (theoretically computable)AL M BL M′ 
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Factorizable case
Let us consider a scattering process of the form

(Ā1 B̄1 C̄1…) (Ā2 B̄2 C̄2…)… (ĀN B̄N C̄N…) → (A1 B1 C1…) (A2 B2 C2…)… (AN BN CN…)

The production matrix  and the diff. cross section are in this caseΓ

Γ =
N

⨂
j=1

Γj(Rj) ⟹
1
σ

dσ
dΩ dκ̄ dκ

= 𝒩Tr ρ
N

⨂
j=1

ΓT
j (Rj)

In this context instead of using , it is convenient to use the factorized one:{TL
M}

N

⨂
j=1

TLj
Mj

Lj, Mj

⟹ ρ =
1
d ∑

L1 L2 …LN

∑
M1 M2 …MN

AL1 M1, L2 M2,…, LN MN

N

⨂
j=1

TLj
Mj
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Applying a similar reasoning than for the general case

∫ dΩ [ 1
σ

dσ
dΩ dκ̄ dκ ]

N

∏
j=1 (

2Lj + 1
4π )

1/2

DLj
Mj M′ j

(Ωj) =
∏N

j=1 BLj M′ j
(κ̄, κ)*

4π
AL1 M1, L2 M2,…, LN MN

(κ̄)

Furthermore, when all the processes are decays ( )N = m

Ā1 Ā2…Ām → (A1 B1 C1…) (A2 B2 C2…)… (Am Bm Cm…),

 spin polarization vector of particle 


 except for  spin correlation matrix of 
particles  and 


 spin correlation tensor of the whole system

Lj = Lj0δj j0 ⟶ AL1 M1, L2 M2,…, Lm Mm
j0

Lj = 0 Lj1, Lj2 ⟶ AL1 M1, L2 M2,…, Lm Mm

j1 j2

Lj ≠ 0 ∀j ⟶ AL1 M1, L2 M2,…, Lm Mm

⋮
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Weyl-Wigner-Moyal formalism
We define the generalized Wigner  symbol of an operator  with respect to  
by

Q A F

ΦQ
A ≡ Tr{A F}

Here  is a Positive Operator-Valued Measure, i.e. an element of a set of positive 
semi-definite hermitian operators , where 

F
{Fl = 𝒦†

l 𝒦l}l ∑
l

𝒦†
l 𝒦l = ∑

l

Fl = 1

We can identify 𝒦λ λ̄ ∝ ℳλ λ̄ ⟹ Fλ̄ λ̄′ 
= ΓT

λ̄ λ̄′ 

⟹ ΦQ
A = Tr{A ΓT}

We also define the generalized Wigner  symbol of an operator  as the 
function  (not unique) such that for any other operator  (or for a basis of 
operators)

P A
ΦP

A B

Tr{A B} =
d

8π2K̄K ∫ dΩ ΦQ
B ΦP

A
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Applying the definition of the  symbol for the operator  Q TL
M

ΦQ
L M(Ω, κ̄, κ) = Tr{TL

M ΓT(Ω, κ̄, κ)} = ∑
M′ 

B̃L M′ 
(κ̄, κ)*DL

M M′ 
(Ω)*

Regarding the  symbol for , it is easy to check that a suitable family is 
given by

P (TL
M)†

ΦP
L̂ M̂, M̂′ 

(Ω, κ̄, κ)† =
4π

BL̂ M̂′ 
(κ̄, κ)* ( 2L̂ + 1

4π )
1/2

DL̂
M̂ M̂′ 

(Ω)

By definition of  symbol we haveP

d
8π2K̄K ∫ dΩ ΦQ

ρ (ΦP
L̂ M̂, M̂′ )

†
= Tr {ρ (TL̂

M̂)
†} = AL̂ M̂
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Finally, from the diff. cross section we get

recovering the exact same result as with the other formalism.

1
σ

dσ
dΩ dκ̄ dκ

=
d

8π2K̄K
Tr{ρ ΓT} =

d
8π2K̄K

ΦQ
ρ ⟹ ΦQ

ρ =
8π2K̄K

d
1
σ

dσ
dΩ dκ̄ dκ

Using this expression as well as the explicit formula for , we 
deduce after some simplifications that

ΦP
L̂ M̂, M̂′ 

(Ω, κ̄, κ)†

∫ dΩ [ 1
σ

dσ
dΩ dκ̄ dκ ] ( 2L + 1

4π )
1/2

DL
M M′ 

(Ω) =
BL M′ 

(κ̄, κ)*
4π

AL M(κ̄),
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Conclusions
• We have developed a practical way of performing the Quantum Tomography of 

the initial helicity state  in general scattering processes. 


• The method is based on computing the coefficients of the expansion over 
 by averaging the angular distribution of the final particles under Wigner 

D-matrices kernels.


• We have further given explicit formulas for the angular dependence of both a 
generalization of the production/decay matrix  and of the diff. cross section, 
elaborating on the factorizable case.


• We have re-derived everything using the Weyl-Wigner-Moyal formalism.

ρ

{TL
M}

Γ

Thank you for your attention!
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