### Quantum Tomography of helicity states for general scattering processes.

### **Alexander Bernal, ift UAM-CSIC** About to appear in the arXiv





Santander, 03 October 2023







### Motivation

all the spin information of the system, in particular:

- Spin polarizations
- Spin correlations
- Entanglement
- Possible violation of Bell inequalities
- Etc

### Simple and experimentally practical Quantum Tomography is highly important!

## From knowing the helicity density matrix of a quantum state we have access to





# Determine the initial helicity state $\rho$ of a general scattering process from the angular distribution data of the final particles



### Steps to follow:

- Generalize the definition of the production/decay matrix  $\Gamma$
- Find the kinematic dependence of both  $\Gamma$  and the normalized differential cross section
- Expand  $\rho$  in terms of  $\{T_M^L\}$  (Irreducible tensor operators) and compute the coefficients of the expansion from the previous results

**Extra:** Re-derivation from Quantum Information perspective (Weyl-Wigner-Moyal formalism)



### **Basic concepts**

• A general quantum system in a Hilbert Space  $\mathscr{H}$  of finite dimension d is described by a  $d \times d$  density matrix  $\rho$ :

$$\rho = \sum_{i} p_i |\psi_i\rangle \langle \psi_i|, \quad p_i \ge 0, \quad \sum_{i} p_i = 1 \iff Tr\{\rho\} = 1$$

- For N-partite systems  $|\psi_i\rangle \in \mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \cdots \otimes \mathcal{H}_N$  with dim  $\mathcal{H}_i = d_i$
- Expectation values of operators are computed by

$$\langle \mathcal{O} \rangle_{\rho}$$

 $= Tr\{\mathcal{O}\rho\}$ 

### State representation of relativistic manyparticle systems

We distinguish 2 reference frames relevant for the work:



We consider a *n*-particle system with fixed  $\lambda_i$  and  $\vec{p}_i$  such that  $\vec{\chi} = \sum \vec{p}_i = \vec{0}$ .

Following this setup, the quantum state of the *n*-particle system is given by

$$\prod_{i=1}^{n} |\vec{p}_{i}\lambda_{i}\rangle = \hat{D}(R)\prod_{i=1}^{n} |\vec{\pi}_{i}\lambda_{i}\rangle = |R\pi\lambda\rangle$$

Here  $\hat{D}(R)$  is the unitary representation of R,  $\lambda$  are the particle's helicities and  $\pi$ are the 3n-3 spherical coordinates in  $\mathscr{RF}^0$ .

A more convenient representation is Ι RΕγκλ

Now,  $\kappa$  is a set of 3n - 7 parameters to be chosen depending on the case

$$\lambda \rangle = |R\kappa\lambda\rangle$$

$$\uparrow$$

E and  $\vec{\chi}$  fixed

angular momentum (J, M):

$$|R \kappa \lambda\rangle = \sum_{J} \sum_{M \Lambda} \frac{(J + I)}{I}$$

where  $D^J_{M\Lambda}(R) \, \delta_{J,J'} = \langle JM | \hat{D}(R) | J'M' \rangle$  is the Wigner D-matrix associated with R and  $\Lambda$  is the projection of the total angular momentum of the system over  $\hat{p}_1$ .

With these tools we can move forward to define the production matrix I' and to compute its elements and kinematic dependence

#### We are interested in the relation between these states and the ones with definite

 $\frac{(-1/2)^{1/2}}{2\pi} D^J_{M\Lambda}(R) | JM\Lambda\kappa\lambda\rangle,$ 

### Generalized production matrix $\Gamma$

We define the production matrix as:

$$\Gamma_{\bar{\lambda}\bar{\lambda}'} \propto \sum_{\lambda} \mathcal{M}_{\lambda\bar{\lambda}} \mathcal{M}_{\lambda\bar{\lambda}'}^{*}, \quad \mathcal{M}_{\lambda\bar{\lambda}} = \langle R \kappa \lambda | S | \bar{R} \bar{\kappa} \bar{\lambda} \rangle$$

with  $\mathcal{M}_{\lambda \bar{\lambda}}$  the so-called helicity amplitudes given in terms of the scattering matrix S and the previously introduced quantum states.

expression after some algebra is given by

$$\Gamma^{T}_{\bar{\lambda}\bar{\lambda'}} \propto \langle \bar{1}\,\bar{\kappa}\,\bar{\lambda} \,|\,\hat{D}(\bar{R}^{-1}R) \left[ \sum_{\lambda} \,(S^{\dagger}\,|\,1\,\kappa\,\lambda) \langle 1\,\kappa\,\lambda \,|\,S) \right] \,\hat{D}(\bar{R}^{-1}R)^{-1} \,|\,\bar{1}\,\bar{\kappa}\,\bar{\lambda'}\rangle$$

We are particularly interested in the transposed matrix  $\Gamma^{T}$ , whose simplified

#### For instance, this implies

$$\Gamma^T(\bar{R},R) = \Gamma^T(\bar{R}^{-1}R)$$

$$\Gamma^{T}(\bar{R}^{-1}R) = \Gamma^{T}(R) = \hat{D}(R) \Gamma^{T}(1) \hat{D}(R)^{-1}, \quad R = R(\varphi_{1}, \theta_{1}, \varphi_{12}) = R(\Omega)$$

One only needs to compute the elements of  $\Gamma^{T}(1)$  and then rotate the matrix accordingly. In general, in the canonical basis

$$\Gamma^{T}(R) = \frac{1}{a_{\sigma\sigma}} \sum_{\sigma\sigma'} \hat{D}(R) e_{\sigma\sigma'} \hat{D}(R)^{-1}, \quad \sigma^{(\prime)} = (\sigma_{1}^{(\prime)}, \dots, \sigma_{m}^{(\prime)})$$

#### $\langle \overline{1}\,\overline{\kappa}\,\sigma \,|\,S^{\dagger}\,|\,1\,\kappa\lambda\rangle\langle 1\,\kappa\lambda\,|\,S$ $a_{\sigma\sigma'} = \sum$ Red. helicity amplitudes (Specific expressions in def. J rep.)

 $= \hat{D}(\bar{R}^{-1}R) \Gamma^{T}(1) \hat{D}(\bar{R}^{-1}R)^{-1}$ We can set the initial configuration as the one defining  $\mathscr{RF}^0$ , hence  $\bar{R} = \bar{1}$ 

$$S | \bar{1} \,\bar{\kappa} \,\sigma' \rangle, \quad a_{\sigma \sigma} = \sum_{\lambda} |\langle 1 \,\kappa \,\lambda \,| \,S | \,\bar{1} \,\bar{\kappa} \,\sigma \rangle |^2$$

### **Reconstruction of density matrix** $\rho$

In order to develop the quantum tomography, we will make use of the relation between  $\rho$ ,  $\Gamma$  and the normalized differential cross section:

$$\frac{1}{\sigma} \frac{d\sigma}{d\Omega \, d\bar{\kappa} \, d\kappa} = \frac{d}{8\pi^2 \bar{K} K} \, Tr\{\rho \, \Gamma^T(R)\}, \quad \bar{K} = \int d\bar{\kappa} \text{ and } K = \int d\kappa$$

by the irreducible tensor operators  $\{T_M^L\}$ .

Actually, we first perform an expansion of both  $\Gamma$  and  $\rho$  over a convenient basis. Due to its transformation property under rotations, the optimal one is composed



As we deal with n particles with spin  $s_i$  each, the dimension of the helicity Hilbert space is  $d = [d_i = ](2s_i + 1).$ i i

In particular this fixes the dimensionality of the basis  $\{T_M^L\}$ :  $L \in \{0, 1, ..., (d - 1)\}$  and  $M \in \{-L, ..., L\}$ .

The elements of each operator are given by

$$\left[T_{M}^{L}\right]_{\sigma_{T}\sigma_{T}'} = (2I)$$

where  $s_T$  is an "effective" spin of the whole system:  $d = 2s_T + 1$ . Another important property is

$$Tr\{T_{M}^{L}(T_{M'}^{L'})^{\dagger}\} = Tr\{T_{M}^{L}(T_{M'}^{L'})^{T}\} = d\,\delta_{LL'}\delta_{MM'}.$$

 $L+1)^{1/2} C^{s_T \sigma_T}_{s_T \sigma'_T LM}$ 

Using the orthogonality condition, we get for any operator

$$A = \frac{1}{d} \sum_{LM} A_{LM} T_M^L, \text{ wi}$$

Applying this result to  $e_{\sigma\sigma'}$ 

$$Tr\{e_{\sigma\sigma'}(T_M^L)^{\dagger}\} = Tr\{e_{\sigma\sigma'}(T_M^L)^T\} = [T_M^L]_{\sigma_T\sigma_T'} = (2L+1)^{1/2}C_{s_T\sigma_T'LM}^{s_T\sigma_T}$$

and plugging this expression in  $\Gamma^T$ (1) leads to

$$\Gamma^{T}(1) = \frac{1}{d} \sum_{L\sigma_{T}^{-}} \tilde{B}_{L\sigma_{T}^{-}} T_{\sigma_{T}^{-}}^{L}, \quad \tilde{B}_{L\sigma_{T}^{-}} \equiv \frac{(2L+1)^{1/2}}{a_{+}} \sum_{\sigma\sigma'} a_{\sigma\sigma'} C_{s_{T}\sigma'_{T}L\sigma_{T}^{-}}^{s_{T}\sigma'_{T}L\sigma_{T}^{-}}$$
$$(\sigma - \sigma') \cdot d^{(\nu)} = \sigma_{T}^{-}$$

 $\operatorname{ith} A_{LM} = Tr\{A\left(T_M^L\right)^{\dagger}\}$ 

Using the transformation of  $\{T_M^L\}$  under rotations

$$\hat{D}(R)T_{M'}^{L}\hat{D}(R)^{-1} = \sum_{M} D_{MM'}^{L}(R)T_{M}^{L} \implies \Gamma^{T}(R) = \frac{1}{d}\sum_{LM} \left[\sum_{M'} \tilde{B}_{LM'}D_{MM'}^{L}(R)\right]T_{M}^{L}$$

In this way, we have given the expansion of  $\Gamma^{T}(R)$  and we have factorized the kinematic dependence as

$$\tilde{B}_{LM'} = \tilde{B}_{LM'}(\bar{\kappa}, \kappa), \quad D^L_{MM'}(R) = D^L_{MM'}(\Omega)$$

In the same fashion,

$$\rho = \frac{1}{d} \sum_{LM} A_{LM} T_M^L \Longrightarrow \frac{1}{\sigma} \frac{d\sigma}{d\Omega \, d\bar{\kappa} \, d\kappa} = \frac{1}{8\pi^2 \bar{K} K} \sum_{LM} A_{LM} Tr\{T_M^L \Gamma^T(R)\} \Longrightarrow$$

$$\frac{1}{\sigma} \frac{d\sigma}{d\Omega \, d\bar{\kappa} \, d\kappa} = \frac{1}{8\pi^2 K \bar{K}} \sum_{LM} A_{LM} \sum_{M'} \tilde{B}^*_{LM'} D_{MM'}^L(R)^*$$

Finally, from the orthogonality conditions for the Wigner D-matrices we get

$$\int d\Omega \left[ \frac{1}{\sigma} \frac{d\sigma}{d\Omega \, d\bar{\kappa} \, d\kappa} \right] \left( \frac{2L+1}{4\pi} \right)^{1/2} D^L_{MM'}(\Omega) = \frac{B_{LM'}(\bar{\kappa},\kappa)^*}{4\pi} A_{LM}(\bar{\kappa})$$

with

we can obtain  $A_{LM}$  knowing  $B_{LM'}$  (theoretically computable) For M' = 0.

$$\int d\Omega \left[ \frac{1}{\sigma} \frac{d\sigma}{d\Omega \, d\bar{\kappa} \, d\kappa} \right] Y_L^{M*}(\Omega) = \frac{B_{LM'}(\bar{\kappa}, \kappa)^*}{4\pi} A_{LM}(\bar{\kappa})$$

$$B_{LM'}(\bar{\kappa},\kappa) \equiv \left(\frac{4\pi}{2L+1}\right)^{1/2} \frac{\tilde{B}_{LM'}(\kappa,\bar{\kappa})}{\bar{K}K}$$

We have accomplished the Quantum Tomography, since from the angular data

### **Factorizable case**

Let us consider a scattering process of the form

$$(\bar{A}_1 \bar{B}_1 \bar{C}_1 \dots) (\bar{A}_2 \bar{B}_2 \bar{C}_2 \dots) \dots (\bar{A}_N \bar{B}_N \bar{C}_N \dots) \to (A_1 B_1 C_1 \dots) (A_2 B_2 C_2 \dots) \dots (A_N B_N C_N \dots)$$

The production matrix  $\Gamma$  and the diff. cross section are in this case

$$\Gamma = \bigotimes_{j=1}^{N} \Gamma_{j}(R_{j}) \implies \frac{1}{\sigma} \frac{d\sigma}{d\Omega \, d\bar{\kappa} \, d\kappa} = \mathcal{N}Tr \left\{ \rho \left( \bigotimes_{j=1}^{N} \Gamma_{j}^{T}(R_{j}) \right) \right\}$$

In this context instead of using  $\{T_M^L\}$ , it is convenient to use the factorized one:

$$\left\{\bigotimes_{j=1}^{N} T_{M_{j}}^{L_{j}}\right\}_{L_{j},M_{j}} \implies \rho = \frac{1}{d} \sum_{L_{1}L_{2}...L_{N}} \sum_{M_{1}M_{2}...M_{N}} A_{L_{1}M_{1},L_{2}M_{2},...,L_{N}M_{N}} \bigotimes_{j=1}^{N} T_{M_{j}}^{L_{j}}$$

Applying a similar reasoning than for the general case

$$\int d\Omega \left[ \frac{1}{\sigma} \frac{d\sigma}{d\Omega \, d\bar{\kappa} \, d\kappa} \right] \left[ \prod_{j=1}^{N} \left( \frac{2L_j + 1}{4\pi} \right)^{1/2} D_{M_j M_j'}^{L_j}(\Omega_j) \right] = \frac{\prod_{j=1}^{N} B_{L_j M_j'}(\bar{\kappa}, \kappa)^*}{4\pi} A_{L_1 M_1, L_2 M_2, \dots, L_N M_N}(\bar{\kappa})$$

Furthermore, when all the processes are decays (N = m)

$$\bar{A}_1 \bar{A}_2 \dots \bar{A}_m \to (A_1 B_1 C_1 \dots) (A_2 B_2 C_2 \dots) \dots (A_m B_m C_m \dots),$$

 $L_j = 0$  except for  $L_{j_1}, L_{j_2} \longrightarrow A_{L_1M_1, L_2M_2, \dots, L_mM_m}$  spin correlation matrix of particles  $j_1$  and  $j_2$ 

 $L_j \neq 0$   $\forall j \longrightarrow A_{L_1M_1, L_2M_2, \dots, L_mM_m}$  spin correlation tensor of the whole system

spin polarization vector of particle  $j_0$ 

## Weyl-Wigner-Moyal formalism

- We define the generalized Wigner Q symbol of an operator A with respect to Fby

We also define the generalized Wigner P symbol of an operator A as the operators)

$$Tr\{AB\} = \frac{d}{8\pi^2 \bar{K}K} \int d\Omega \Phi_B^Q \Phi_A^P$$

 $\Phi^Q_{\Lambda} \equiv Tr\{AF\}$ 

Here F is a Positive Operator-Valued Measure, i.e. an element of a set of positive semi-definite hermitian operators  $\{F_l = \mathscr{K}_l^{\dagger} \mathscr{K}_l\}_l$ , where  $\sum \mathscr{K}_l^{\dagger} \mathscr{K}_l = \sum F_l = 1$ We can identify  $\mathscr{K}_{\lambda\bar{\lambda}} \propto \mathscr{M}_{\lambda\bar{\lambda}} \implies F_{\bar{\lambda}\bar{\lambda}'} = \Gamma^T_{\bar{\lambda}\bar{\lambda}'} \implies \Phi^Q_A = Tr\{A \Gamma^T\}$ 

function  $\Phi^P_A$  (not unique) such that for any other operator B (or for a basis of

Applying the definition of the Q symbol for the operator  $T_M^L$ 

$$\Phi_{LM}^Q(\Omega,\bar{\kappa},\kappa) = Tr\{T_M^L\Gamma^T(\Omega,\bar{\kappa},\kappa)\} = \sum_{M'} \tilde{B}_{LM'}(\bar{\kappa},\kappa)^* D_{MM'}^L(\Omega)^*$$

Regarding the P symbol for  $(T_M^L)^{\dagger}$ , it is easy to check that a suitable family is given by

$$\Phi^{P}_{\hat{L}\hat{M},\hat{M}'}(\Omega,\bar{\kappa},\kappa)^{\dagger} = \frac{4\pi}{B_{\hat{L}\hat{M}'}(\bar{\kappa},\kappa)^{*}} \left(\frac{2\hat{L}+1}{4\pi}\right)^{1/2} D^{\hat{L}}_{\hat{M}\hat{M}'}(\Omega)$$

By definition of *P* symbol we have

$$\frac{d}{8\pi^2 \bar{K} K} \int d\Omega \,\Phi^Q_\rho \,\left(\Phi^P_{\hat{L}\hat{M},\hat{M}'}\right)^\dagger = Tr \left\{\rho \,\left(T^{\hat{L}}_{\hat{M}}\right)^\dagger\right\} = A_{\hat{L}\hat{M}}$$

Finally, from the diff. cross section we get

$$\frac{1}{\sigma} \frac{d\sigma}{d\Omega \, d\bar{\kappa} \, d\kappa} = \frac{d}{8\pi^2 \bar{K} K} Tr\{\rho \, \Gamma^T\} = \frac{d}{8\pi^2 \bar{K} K} \Phi^Q_\rho \implies \Phi^Q_\rho = \frac{8\pi^2 \bar{K} K}{d} \frac{1}{\sigma} \frac{d\sigma}{d\Omega \, d\bar{\kappa} \, d\kappa}$$

deduce after some simplifications that

$$\int d\Omega \left[ \frac{1}{\sigma} \frac{d\sigma}{d\Omega \, d\bar{\kappa} \, d\kappa} \right] \left( \frac{2L+1}{4\pi} \right)^{1/2} D^L_{MM'}(\Omega) = \frac{B_{LM'}(\bar{\kappa},\kappa)^*}{4\pi} A_{LM}(\bar{\kappa}),$$

recovering the exact same result as with the other formalism.

Using this expression as well as the explicit formula for  $\Phi^P_{\hat{L}\hat{M},\hat{M}'}(\Omega,\bar{\kappa},\kappa)^{\dagger}$ , we

### Conclusions

- the initial helicity state  $\rho$  in general scattering processes.
- D-matrices kernels.
- elaborating on the factorizable case.
- We have re-derived everything using the Weyl-Wigner-Moyal formalism.

# Thank you for your attention!

We have developed a practical way of performing the Quantum Tomography of

 The method is based on computing the coefficients of the expansion over  $\{T_M^L\}$  by averaging the angular distribution of the final particles under Wigner

• We have further given explicit formulas for the angular dependence of both a generalization of the production/decay matrix  $\Gamma$  and of the diff. cross section,

