Quantum Tomography of helicity states for general scattering processes.

Alexander Bernal, ift UAM-CSIC About to appear in the arXiv

ift
Instituto de
Física
Teórica
UAM-CSIC

Santander, 03 October 2023

Motivation

From knowing the helicity density matrix of a quantum state we have access to all the spin information of the system, in particular:

- Spin polarizations
- Spin correlations
- Entanglement
- Possible violation of Bell inequalities
- Etc

Simple and experimentally practical Quantum Tomography is highly important!

Main goal

Determine the initial helicity state ρ of a general scattering process from the angular distribution data of the final particles

Steps to follow:

- Generalize the definition of the production/decay matrix Γ
- Find the kinematic dependence of both Γ and the normalized differential cross section
- Expand ρ in terms of $\left\{T_{M}^{L}\right\}$ (Irreducible tensor operators) and compute the coefficients of the expansion from the previous results

Extra: Re-derivation from Quantum Information perspective (Weyl-Wigner-Moyal formalism)

Basic concepts

- A general quantum system in a Hilbert Space \mathscr{H} of finite dimension d is described by a $d \times d$ density matrix ρ :

$$
\rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|, \quad p_{i} \geq 0, \quad \sum_{i} p_{i}=1 \Longleftrightarrow \operatorname{Tr}\{\rho\}=1
$$

- For N-partite systems $\left|\psi_{i}\right\rangle \in \mathscr{H}=\mathscr{H}_{1} \otimes \mathscr{H}_{2} \otimes \cdots \otimes \mathscr{H}_{N}$ with $\operatorname{dim} \mathscr{H}_{i}=d_{i}$
- Expectation values of operators are computed by

$$
\langle\mathcal{O}\rangle_{\rho}=\operatorname{Tr}\{\mathcal{O} \rho\}
$$

State representation of relativistic manyparticle systems

We consider a n-particle system with fixed λ_{i} and \vec{p}_{i} such that $\vec{\chi}=\sum \vec{p}_{i}=\overrightarrow{0}$. We distinguish 2 reference frames relevant for the work:

Following this setup, the quantum state of the n-particle system is given by

$$
\prod_{i=1}^{n}\left|\vec{p}_{i} \lambda_{i}\right\rangle=\hat{D}(R) \prod_{i=1}^{n}\left|\vec{\pi}_{i} \lambda_{i}\right\rangle=|R \pi \lambda\rangle
$$

Here $\hat{D}(R)$ is the unitary representation of R, λ are the particle's helicities and π are the $3 n-3$ spherical coordinates in $\mathscr{R} \mathscr{F}^{0}$.

A more convenient representation is

$$
\begin{gathered}
|R E \vec{\chi} \kappa \lambda\rangle=|R \kappa \lambda\rangle \\
E \text { and } \vec{\chi} \text { fixed }
\end{gathered}
$$

Now, κ is a set of $3 n-7$ parameters to be chosen depending on the case

We are interested in the relation between these states and the ones with definite angular momentum (J, M):

$$
|R \kappa \lambda\rangle=\sum_{J} \sum_{M \Lambda} \frac{(J+1 / 2)^{1 / 2}}{2 \pi} D_{M \Lambda}^{J}(R)|J M \Lambda \kappa \lambda\rangle,
$$

where $D_{M \Lambda}^{J}(R) \delta_{J, J^{\prime}}=\langle J M| \hat{D}(R)\left|J^{\prime} M^{\prime}\right\rangle$ is the Wigner D-matrix associated with R and Λ is the projection of the total angular momentum of the system over \hat{p}_{1}.

With these tools we can move forward to define the production matrix Γ and to compute its elements and kinematic dependence

Generalized production matrix Γ

We define the production matrix as:

$$
\Gamma_{\bar{\lambda} \bar{\lambda}} \propto \sum_{\lambda} \mathscr{M}_{\lambda \bar{\lambda}} \mathscr{M}_{\lambda \bar{\lambda}\rangle}^{*} \quad \mathscr{M}_{\lambda \bar{\lambda}}=\langle R \kappa \lambda| S|\bar{R} \bar{\kappa} \bar{\lambda}\rangle
$$

with $\mathscr{M}_{\lambda \bar{\lambda}}$ the so-called helicity amplitudes given in terms of the scattering matrix S and the previously introduced quantum states.

We are particularly interested in the transposed matrix Γ^{T}, whose simplified expression after some algebra is given by

$$
\Gamma_{\bar{\lambda} \bar{\lambda}^{\prime}}^{T} \propto\langle\overline{1} \bar{\kappa} \bar{\lambda}| \hat{D}\left(\bar{R}^{-1} R\right)\left[\sum_{\lambda}\left(S^{\dagger}|1 \kappa \lambda\rangle\langle 1 \kappa \lambda| S\right)\right] \hat{D}\left(\bar{R}^{-1} R\right)^{-1}\left|\overline{1} \bar{\kappa} \overline{\lambda^{\prime}}\right\rangle
$$

For instance, this implies

$$
\Gamma^{T}(\bar{R}, R)=\Gamma^{T}\left(\bar{R}^{-1} R\right)=\hat{D}\left(\bar{R}^{-1} R\right) \Gamma^{T}(1) \hat{D}\left(\bar{R}^{-1} R\right)^{-1}
$$

We can set the initial configuration as the one defining $\mathscr{R} \mathscr{F}^{0}$, hence $\bar{R}=\overline{1}$

$$
\Gamma^{T}\left(\bar{R}^{-1} R\right)=\Gamma^{T}(R)=\hat{D}(R) \Gamma^{T}(1) \hat{D}(R)^{-1}, \quad R=R\left(\varphi_{1}, \theta_{1}, \varphi_{12}\right)=R(\Omega)
$$

One only needs to compute the elements of $\Gamma^{T}(1)$ and then rotate the matrix accordingly. In general, in the canonical basis

$$
\begin{aligned}
& \Gamma^{T}(R)=\frac{1}{a_{\sigma \sigma}} \sum_{\sigma \sigma^{\prime}} a_{\sigma \sigma^{\prime}} \hat{D}(R) e_{\sigma \sigma^{\prime}} \hat{D}(R)^{-1}, \quad \sigma^{\left({ }^{\prime}\right)}=\left(\sigma_{1}^{\left({ }^{\prime}\right)}, \ldots, \sigma_{m}^{\left({ }^{(}\right)}\right) \\
& \left.\left.a_{\sigma \sigma^{\prime}}=\sum_{\lambda}\langle\overline{1} \bar{\kappa} \sigma| S^{\text {Red. helicity ampititdes }} \begin{array}{c}
\dagger \\
\text { (Specific expressions in def. } J \text { rep.) }
\end{array}\right) S\left|\overline{1} \bar{\kappa} \bar{\kappa} \sigma^{\prime}\right\rangle, \quad a_{\sigma \sigma}=\sum_{\lambda}|\langle 1 \kappa \lambda| S| \overline{1} \bar{\kappa} \sigma\right\rangle\left.\right|^{2}
\end{aligned}
$$

Reconstruction of density matrix ρ

In order to develop the quantum tomography, we will make use of the relation between ρ, Γ and the normalized differential cross section:

$$
\frac{1}{\sigma} \frac{d \sigma}{d \Omega d \bar{\kappa} d \kappa}=\frac{d}{8 \pi^{2} \bar{K} K} \operatorname{Tr}\left\{\rho \Gamma^{T}(R)\right\}, \quad \bar{K}=\int d \bar{\kappa} \text { and } K=\int d \kappa
$$

Actually, we first perform an expansion of both Γ and ρ over a convenient basis. Due to its transformation property under rotations, the optimal one is composed by the irreducible tensor operators $\left\{T_{M}^{L}\right\}$.

As we deal with n particles with spin s_{i} each, the dimension of the helicity Hilbert space is $d=\prod_{i} d_{i}=\prod_{i}\left(2 s_{i}+1\right)$.
In particular this fixes the dimensionality of the basis $\left\{T_{M}^{L}\right\}$:

$$
L \in\{0,1, \ldots,(d-1)\} \text { and } M \in\{-L, \ldots, L\} .
$$

The elements of each operator are given by

$$
\left[T_{M}^{L}\right]_{\sigma_{T} \sigma_{T}^{\prime}}=(2 L+1)^{1 / 2} C_{s_{T} \sigma_{T}^{\prime} L M}^{s_{T} \sigma_{T}}
$$

where s_{T} is an "effective" spin of the whole system: $d=2 s_{T}+1$. Another important property is

$$
\operatorname{Tr}\left\{T_{M}^{L}\left(T_{M^{\prime}}\right)^{\dagger}\right\}=\operatorname{Tr}\left\{T_{M}^{L}\left(T_{M^{\prime}}^{L^{\prime}}\right)^{T}\right\}=d \delta_{L L^{\prime}} \delta_{M M^{\prime}}
$$

Using the orthogonality condition, we get for any operator

$$
A=\frac{1}{d} \sum_{L M} A_{L M} T_{M}^{L}, \text { with } A_{L M}=\operatorname{Tr}\left\{A\left(T_{M}^{L}\right)^{\dagger}\right\}
$$

Applying this result to $e_{\sigma \sigma^{\prime}}$

$$
\operatorname{Tr}\left\{e_{\sigma \sigma^{\prime}}\left(T_{M}^{L}\right)^{\dagger}\right\}=\operatorname{Tr}\left\{e_{\sigma \sigma^{\prime}}\left(T_{M}^{L}\right)^{T}\right\}=\left[T_{M}^{L}\right]_{\sigma_{T} \sigma_{T}^{\prime}}=(2 L+1)^{1 / 2} C_{s_{T} \sigma_{T}^{\prime} L M}^{s_{T} \sigma_{T}}
$$

and plugging this expression in $\Gamma^{T}(1)$ leads to

$$
\Gamma^{T}(1)=\frac{1}{d} \sum_{L \sigma_{\bar{T}}^{-}} \tilde{B}_{L \sigma_{\bar{T}}} T_{\sigma_{\bar{T}}}^{L}, \quad \tilde{B}_{L \sigma_{\bar{T}}} \equiv \frac{(2 L+1)^{1 / 2}}{a_{+}} \sum_{\substack{\sigma \sigma^{\prime} \\\left(\sigma-\sigma^{\prime}\right) \cdot d^{(v)}=\sigma_{\bar{T}}^{-}}} a_{\sigma \sigma^{\prime}} C_{s_{T} \sigma_{T}^{T} L \sigma_{\bar{T}}}^{s_{T} \sigma_{T}}
$$

Using the transformation of $\left\{T_{M}^{L}\right\}$ under rotations

$$
\hat{D}(R) T_{M^{\prime}}^{L} \hat{D}(R)^{-1}=\sum_{M} D_{M M^{\prime}}^{L}(R) T_{M}^{L} \Longrightarrow \Gamma^{T}(R)=\frac{1}{d} \sum_{L M}\left[\sum_{M^{\prime}} \tilde{B}_{L M^{\prime}} D_{M M^{\prime}}^{L}(R)\right] T_{M}^{L}
$$

In this way, we have given the expansion of $\Gamma^{T}(R)$ and we have factorized the kinematic dependence as

$$
\tilde{B}_{L M^{\prime}}=\tilde{B}_{L M^{\prime}}(\bar{\kappa}, \kappa), \quad D_{M M^{\prime}}^{L}(R)=D_{M M^{\prime}}^{L}(\Omega)
$$

In the same fashion,

$$
\begin{gathered}
\rho=\frac{1}{d} \sum_{L M} A_{L M} T_{M}^{L} \Longrightarrow \frac{1}{\sigma} \frac{d \sigma}{d \Omega d \bar{\kappa} d \kappa}=\frac{1}{8 \pi^{2} \bar{K} K} \sum_{L M} A_{L M} \operatorname{Tr}\left\{T_{M}^{L} \Gamma^{T}(R)\right\} \Longrightarrow \\
\frac{1}{\sigma} \frac{d \sigma}{d \Omega d \bar{\kappa} d \kappa}=\frac{1}{8 \pi^{2} K \bar{K}} \sum_{L M} A_{L M} \sum_{M^{\prime}} \tilde{B}_{L M^{\prime}}^{*} D_{M M^{\prime}}^{L}(R)^{*}
\end{gathered}
$$

Finally, from the orthogonality conditions for the Wigner D-matrices we get

$$
\int d \Omega\left[\frac{1}{\sigma} \frac{d \sigma}{d \Omega d \bar{\kappa} d \kappa}\right]\left(\frac{2 L+1}{4 \pi}\right)^{1 / 2} D_{M M^{\prime}}^{L}(\Omega)=\frac{B_{L M^{\prime}}(\bar{\kappa}, \kappa)^{*}}{4 \pi} A_{L M}(\bar{\kappa})
$$

with

$$
B_{L M^{\prime}}(\bar{\kappa}, \kappa) \equiv\left(\frac{4 \pi}{2 L+1}\right)^{1 / 2} \frac{\tilde{B}_{L M^{\prime}}(\kappa, \bar{\kappa})}{\bar{K} K}
$$

We have accomplished the Quantum Tomography, since from the angular data we can obtain $A_{L M}$ knowing $B_{L M^{\prime}}$ (theoretically computable)

For $M^{\prime}=0$,

$$
\int d \Omega\left[\frac{1}{\sigma} \frac{d \sigma}{d \Omega d \bar{\kappa} d \kappa}\right] Y_{L}^{M^{*}}(\Omega)=\frac{B_{L M^{\prime}}(\bar{\kappa}, \kappa)^{*}}{4 \pi} A_{L M}(\bar{\kappa})
$$

Factorizable case

Let us consider a scattering process of the form

$$
\left(\bar{A}_{1} \bar{B}_{1} \bar{C}_{1} \ldots\right)\left(\bar{A}_{2} \bar{B}_{2} \bar{C}_{2} \ldots\right) \ldots\left(\bar{A}_{N} \bar{B}_{N} \bar{C}_{N} \ldots\right) \rightarrow\left(A_{1} B_{1} C_{1} \ldots\right)\left(A_{2} B_{2} C_{2} \ldots\right) \ldots\left(A_{N} B_{N} C_{N} \ldots\right)
$$

The production matrix Γ and the diff. cross section are in this case

$$
\Gamma=\bigotimes_{j=1}^{N} \Gamma_{j}\left(R_{j}\right) \Longrightarrow \frac{1}{\sigma} \frac{d \sigma}{d \Omega d \bar{\kappa} d \kappa}=\operatorname{NTr}\left\{\rho\left(\bigotimes_{j=1}^{N} \Gamma_{j}^{T}\left(R_{j}\right)\right)\right\}
$$

In this context instead of using $\left\{T_{M}^{L}\right\}$, it is convenient to use the factorized one:

$$
\left\{\bigotimes_{j=1}^{N} T_{M_{j}}^{L_{j}}\right\}_{L_{j}, M_{j}} \Longrightarrow \rho=\frac{1}{d} \sum_{L_{1} L_{2} \ldots L_{N} M_{1} M_{2} \ldots M_{N}} A_{L_{1} M_{1}, L_{2} M_{2}, \ldots, L_{N} M_{N}} \bigotimes_{j=1}^{N} T_{M_{j}}^{L_{j}}
$$

Applying a similar reasoning than for the general case

$$
\int d \Omega\left[\frac{1}{\sigma} \frac{d \sigma}{d \Omega d \bar{\kappa} d \kappa}\right]\left[\prod_{j=1}^{N}\left(\frac{2 L_{j}+1}{4 \pi}\right)^{1 / 2} D_{M_{j} M_{j}^{(}}^{L_{j}}\left(\Omega_{j}\right)\right]=\frac{\prod_{j=1}^{N} B_{L_{j} M_{j}}(\bar{\kappa}, \kappa)^{*}}{4 \pi} A_{L_{1} M_{1}, L_{2} M_{2}, \ldots, L_{N} M_{N}}(\bar{\kappa})
$$

Furthermore, when all the processes are decays $(N=m)$

$$
\bar{A}_{1} \bar{A}_{2} \ldots \bar{A}_{m} \rightarrow\left(A_{1} B_{1} C_{1} \ldots\right)\left(A_{2} B_{2} C_{2} \ldots\right) \ldots\left(A_{m} B_{m} C_{m} \ldots\right),
$$

$L_{j}=L_{j_{0}} \delta_{j j_{0}} \longrightarrow A_{L_{1} M_{1}, L_{2} M_{2}, \ldots, L_{m} M_{m}}$ spin polarization vector of particle j_{0}
$L_{j}=0$ except for $L_{j_{1}}, L_{j_{2}} \longrightarrow A_{L_{1} M_{1}, L_{2} M_{2}, \ldots, L_{m} M_{m}}$ spin correlation matrix of particles j_{1} and j_{2}
$L_{j} \neq 0 \quad \forall j \longrightarrow A_{L_{1} M_{1}, L_{2} M_{2}, \ldots, L_{m} M_{m}}$ spin correlation tensor of the whole system

Weyl-Wigner-Moyal formalism

We define the generalized Wigner Q symbol of an operator A with respect to F by

$$
\Phi_{A}^{Q} \equiv \operatorname{Tr}\{A F\}
$$

Here F is a Positive Operator-Valued Measure, i.e. an element of a set of positive semi-definite hermitian operators $\left\{F_{l}=\mathscr{K}_{l}^{\dagger} \mathscr{K}_{l}\right\}_{l}$, where $\sum_{l} \mathscr{K}_{l}^{\dagger} \mathscr{K}_{l}=\sum_{l} F_{l}=1$ We can identify $\mathscr{K}_{\lambda \bar{\lambda}} \propto \mathscr{M}_{\lambda \bar{\lambda}} \Longrightarrow F_{\bar{\lambda} \bar{\lambda}^{\prime}}=\Gamma_{\bar{\lambda} \bar{\lambda}^{\prime}}^{T} \Longrightarrow \Phi_{A}^{Q}=\operatorname{Tr}\left\{A \Gamma^{T}\right\}$

We also define the generalized Wigner P symbol of an operator A as the function Φ_{A}^{P} (not unique) such that for any other operator B (or for a basis of operators)

$$
\operatorname{Tr}\{A B\}=\frac{d}{8 \pi^{2} \bar{K} K} \int d \Omega \Phi_{B}^{Q} \Phi_{A}^{P}
$$

Applying the definition of the Q symbol for the operator T_{M}^{L}

$$
\Phi_{L M}^{Q}(\Omega, \bar{\kappa}, \kappa)=\operatorname{Tr}\left\{T_{M}^{L} \Gamma^{T}(\Omega, \bar{\kappa}, \kappa)\right\}=\sum_{M^{\prime}} \tilde{B}_{L M^{\prime}}(\bar{\kappa}, \kappa)^{*} D_{M M^{\prime}}^{L}(\Omega)^{*}
$$

Regarding the P symbol for $\left(T_{M}^{L}\right)^{\dagger}$, it is easy to check that a suitable family is given by

$$
\Phi_{\hat{L} \hat{M}, \hat{M}^{\prime}}^{P}(\Omega, \bar{\kappa}, \kappa)^{\dagger}=\frac{4 \pi}{B_{\hat{L} \hat{M}^{\prime}}(\bar{\kappa}, \kappa)^{*}}\left(\frac{2 \hat{L}+1}{4 \pi}\right)^{1 / 2} D_{\hat{M} \hat{M}^{\prime}}^{\hat{L}}(\Omega)
$$

By definition of P symbol we have

$$
\frac{d}{8 \pi^{2} \bar{K} K} \int d \Omega \Phi_{\rho}^{Q}\left(\Phi_{\hat{L} \hat{M}, \hat{M}^{\prime}}^{P}\right)^{\dagger}=\operatorname{Tr}\left\{\rho\left(T_{\hat{M}}^{\hat{L}}\right)^{\dagger}\right\}=A_{\hat{L} \hat{M}}
$$

Finally, from the diff. cross section we get

$$
\frac{1}{\sigma} \frac{d \sigma}{d \Omega d \bar{\kappa} d \kappa}=\frac{d}{8 \pi^{2} \bar{K} K} \operatorname{Tr}\left\{\rho \Gamma^{T}\right\}=\frac{d}{8 \pi^{2} \bar{K} K} \Phi_{\rho}^{Q} \Longrightarrow \Phi_{\rho}^{Q}=\frac{8 \pi^{2} \bar{K} K}{d} \frac{1}{\sigma} \frac{d \sigma}{d \Omega d \bar{\kappa} d \kappa}
$$

Using this expression as well as the explicit formula for $\Phi_{\hat{L} \hat{M}, \hat{M}^{\prime}}^{P}(\Omega, \bar{\kappa}, \kappa)^{\dagger}$, we deduce after some simplifications that

$$
\int d \Omega\left[\frac{1}{\sigma} \frac{d \sigma}{d \Omega d \bar{\kappa} d \kappa}\right]\left(\frac{2 L+1}{4 \pi}\right)^{1 / 2} D_{M M^{\prime}}^{L}(\Omega)=\frac{B_{L M^{\prime}}(\bar{\kappa}, \kappa)^{*}}{4 \pi} A_{L M}(\bar{\kappa})
$$

recovering the exact same result as with the other formalism.

Conclusions

- We have developed a practical way of performing the Quantum Tomography of the initial helicity state ρ in general scattering processes.
- The method is based on computing the coefficients of the expansion over $\left\{T_{M}^{L}\right\}$ by averaging the angular distribution of the final particles under Wigner D-matrices kernels.
- We have further given explicit formulas for the angular dependence of both a generalization of the production/decay matrix Γ and of the diff. cross section, elaborating on the factorizable case.
- We have re-derived everything using the Weyl-Wigner-Moyal formalism.

Thank you for your attention!

