Muon Collider -
Parameter Consideration
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Parameter Optimisation

International
“Top down” optimisation of the low energy complex AHET’%W‘%
= Look at performance of the muon collider as a function of
“low energy complex” parameters
= Proton beam parameters
= Target capability
= Muon cooling system performance
= For this first pass, take luminosity as the figure of merit
= To avoid controversy, | have taken arbitrary normalisation
factor
= Nb: first pass - model improvements are welcome (and
needed)
= Other FoMs may be important
= Energy spread at the detector
= Capital & operating costs
= Environmental considerations
= Developing better model for muon collider performance

= Take this all with a “pin&of salt”
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Facility Model
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= Facility model is naive python script
= Assume some proton beam power and rep rate (i.e. charge
per proton pulse)
= Use Soler et al to get proton -» muon production yield

= Normalised to HARP data
= Qther calculations exist, similar to O(factor 2)

= Cooling performance from papers by Stratakis & Sayed
= With some bespoke hacking which I will describe
= High energy complex
= Assume acceleration average 4 MV/m over the whole complex
= Gives muon survival
= Assume negligible emittance growth
= Assume 10 km circumference collider ring (at 5 TeV)

= Assume B*is 1.5 mm constant

= Really this depends on longitudinal and transverse emittance
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Facility Model (2)
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= Relevant proton baseline parameters:
= Proton energy 5 GeV
= Beam power 2.4 MW
= Rep Rate 5 Hz
= Proton bunch length 2 ns

= Luminosity L = NiN./410,2
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Proton energy (1)
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= How sensitive is Muon collider to proton energy?

= Use data from Soler et al to get muon — proton conversion
rate vs energy

= Normalised i.e. number of muons/proton/GeV
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Proton energy (2)
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= How sensitive is Muon collider to proton energy?
= Assumes heavy metal target at high energy
= Red curves are contours
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Proton bunch length (1)
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= Consider proton bunch length
= Sayed and Berg looked at yield for different magnetic tapers
and proton bunch length
= MAP baseline ~ taper length = 20 metres
= How does the proton bunch length affect yield?
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Proton bunch length (2)
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= Muon yield is soft function of proton bunch length
= Shorter bunch may be harder to achieve than slight uplift in

muon beam power
v
4.5

lel2

Luminosity [AU]

i
(=]
=
pu
@
[
[1H]
o
£ 4.0
— g —
z 25 = =
[
= =] a5
[ |
U o v
S o E
& 20 E 3.0
£ = E
2 3
el
s 15 = 2.5
2 2
2 g
= & 2.0
1.0
1.5
0.5
1.0
2 4 6 8 10 12 14 16 18 2 4 6 8 10 12 14 16 18
Proton Bunch Length [ns] Proton Bunch Length [ns]

& Science & Technology Facilities Council



Rep rate vs number of muons
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= Reducing the rep rate while holding power constant
= Number of muons per second is unchanged
= Number of muons per bunch increases
" Increased luminosity
"= Increased collective effects
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Rep rate vs luminosity
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= Reducing rep rate -» much higher instantaneous beam
brightness

= Higher luminosity
= Where is the limit for collective effects in the accelerator system?
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Cooling Performance

TABLE II.  Simulation results of the normalized emittance and
momentum at the exit of each stage of our proposed rectilinear

channel. The last column shows the transmission, 7, of
. “pe ach stage. [Stratakis et al]
= Use Stratakis paper for rectilinear — , ‘
f Stage &™ [mm] ™ [mm] P [MeV/c] T [%]
performance Begin 17.00 46.00 255
. . Al 6.28 14.48 238 70.6
= Use Sayed paper for final cooling A2 340 464 29 875
A3 2.07 2.60 220 88.8
performance A4 1.48 235 215 94.6
. . Begin 5.10 10.04 209
"= Assume successful final coollng Bl 3.76 7.76 210 89.7
. B2 2.40 6.10 208 90.6
deS|g n B3 1.55 4.28 207 89.2
) ) B4 1.10 3.40 207 89.7
= Fiat reduction to 0.025 mm BS 0.68 2.97 204 87.5
. B6 0.50 2.16 202 88.0
emittance B7 0.38 1.93 200 89.6
. . . BS 0.28 1.57 200 89.0
= Fiat 50 % loss during reacceleration
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Cooling Emittance
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= How does emittance vary along the -
cooling system?
= Note - assume each “final cooling”
cell is 10 m long g 1]
= No allowance for E
= Emittance growth from bunch merge )
= Emittance growth from charge =
separation
= Assume successful final cooling T ostmcesogcooingml
design
= Fiat reduction to 0.025 mm
emittance
= Fiat 50 % loss during reacceleration
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Significant reduction in 6D
emittance

Note transmission losses
throughout the cooling
system
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Luminosity
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= Assuming MDI g*=1.5 mm independent of emittance(!)
= Luminosity is only weakly helped by final cooling
= Lots of transmission losses here

= Need to understand to what extent focus is limited by
longitudinal and transverse emittances...
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Conclusions
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= Design choices for low energy complex are flexible

= Some areas for trade-offs
= Can trade proton beam power against other design aspects

= Add in target radius

= Can lower rep rate to quickly improve luminosity
= Where are the intensity/collective effects limits in the facility?

= Some areas for improvement
= Efficacy of final cooling system can be improved
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