# Big-Bang Nucleosynthesis Beyond the Lithium Problem?

## Fundamental Contributions at CERN

## Brian Fields CERN Theory Colloquium Aug 23, 2023

# ILLINOIS



# **Big-Bang Nucleosynthesis**









**Rise of the Light Elements in the Early Universe** 

**Cosmic Baryons and the Microwave Background** 

**The Lithium Problem and Possible Resolution** 

**The Future: Probing the Early U and New Physics** 

## Rise of the Light Elements in the Early Universe



## **Big Bang Nucleosynthesis:** A Symphony of Fundamental Forces

- BBN: unique arena
- all four fundamental forces participate
- BBN: unique testbed
  - probes all fundamental interactions







**Standard BBN** 

## **Big Bang Nucleosynthesis**

Follow weak and nuclear reactions in expanding, cooling Universe

Dramatis Personae Radiation dominates!  $\gamma$ ,  $e^{\pm}$ ,  $3\nu\bar{\nu}$ Matter p, ntiny baryon-to-photon ratio (the only free parameter!)  $\eta \equiv n_{\rm B}/n_{\gamma} \sim 10^{-9}$ Initial Conditions: T >> 1 MeV, t<< 1 sec n-p weak equilibrium:  $pe^- \leftrightarrow n\nu_e$   $ne^+ \leftrightarrow p\bar{\nu}_e$ neutron-to-proton ratio:  $n/p = e^{-(m_n - m_p)c^2/kT}$ Weak Freezeout: T ~ 1 MeV, t~1 sec  $\tau_{\rm weak}(n \leftrightarrow p) > t_{\rm universe}$ 

$$\operatorname{fix}\left(\frac{n}{p}\right)_{\mathrm{freeze}} \approx e^{-\Delta m/T_{\mathrm{freeze}}} \sim \frac{1}{7}$$

Light Elements Born: T~0.07 MeV, t~3 min reaction flow most stable light nucleus essentially all n 4He, ~25% by mass also: traces of D, 3He, 7Li





葉宗翰

abundances



## **Stanard BBN Predictions**

#### **Curve Widths: Theoretical uncertainty** nuclear cross sections

#### BDF, Olive, Yeh, Young 2020

**Pitrou+ 2018** Cyburt, BDF, Olive, Yeh 2015 **Descouvement poster** Cyburt, BDF, Olive 2008 **Cyburt 2004** Coq et al 2004 Serpico et al 2005 Cyburt, BDF, Olive 2001 Krauss & Romanelli 1988 Smith, Kawano, Malaney 1993

## **Note strong D sensitivity to density**

Nollett & Burles 2000

## Light Elements: Sites





- in z~3 galaxies backlit by quasars
- New! leap in precision: Pettini, Cooke+ 2013-2019





#### 7**Li**

- metal-poor halo stars in Milky Way

- hyperfine in Milky Way HII regions Rood, Wilson, Bania+ no low-metal data; not used for cosmology



#### - ionized gas (HII regions) in metal-poor galaxies Aver, Olive, Skillman+

- New! CMB damping tail: SPT 2011,2012; Planck 2013-2018

# Newish! now also extragalactic observations



## Testing BBN: Light Element Observations

#### **Theory:**

- 1 free parameter predicts
- 4 nuclides: D, <sup>3</sup>He, <sup>4</sup>He, <sup>7</sup>Li

#### **Observations:**

• 3 nuclides with precision: D, 4He, 7Li

#### **Comparison:**

★each nuclide selects baryon density ★overconstrained--nontrivial test!

Result: ★rough concordance! ★but not in detail! D and <sup>7</sup>Li disagree need a tiebreaker





# **COSMIC BARYONS** and the **MICROWAVE BACKGROUND**

## **Battle of the Baryons: II CMB New World Order** baryon density $\Omega_{\rm b}h^2$ 10<sup>-2</sup>

Cyburt, BDF, Olive 2003, ..., Yeh, Olive, BDF 2021



**Planck baryon density very precise** 

 $\Omega_{\rm B} h^2 = 0.022298 \pm 0.000020$  $\eta = (6.104 \pm 0.058) \times 10^{-10}$ 

i.e., a sub-1% measurement!

New strategy to test BBN:  $\sqrt{\text{use Planck }\eta_{\text{cmb}}\text{as BBN }\underline{\text{input}}}$ predict all lite elements with appropriate error propagation compare with observations





葉宗翰

## Battle of the Baryons: II A Closer Look Cyburt, BDF, Olive 2003, 2008, 2015; BDF, Olive, Yeh, Young 2020

## Likelihoods purple: BBN+CMB predictions yellow: observations

#### **Results:**

- **D** excellent!
- ➢ <sup>4</sup>He great!
- ➢ <sup>7</sup>Li poor!
  - observation ~ theory/4
  - 4-5 sigma discrepancy
  - **Lithium Problem** -





# ithiun h Problem



#### standard particle physics



nuclear physics



## Solutions: one of these is wrong

## **Nuclear Physics:** Hoyle's Revenge?

#### **Cyburt & Pospelov 2009**

**\* "sub-dominant" Li reactions** important if narrow resonance missed

cf Hoyle state in <sup>12</sup>C burning

**\*** proposal: <sup>7</sup>Be+d inelastic

#### Chakraborty, BDF, & Olive 2011

- \* systematic study of all A=7 destruction rxns
  - $\checkmark$  confirms <sup>7</sup>Be+d  $\Rightarrow$  <sup>9</sup>B\*
  - $\checkmark$  even better: <sup>3</sup>He+<sup>7</sup>Be $\Rightarrow$ <sup>10</sup>C\*

t+7Be-→10B\*





Nachiketa Chakraborty



## **Experiment Says:** Not there!

<sup>10</sup>C\*: Hammache+ 2013 <sup>9</sup>Be\*: O'Malley+ 2011





## **New Physics Lithium Solutions** an Incomplete Survey

- Particle Physics Beyond the Standard Model
  - decaying particles Supersymmetry Cyburt+ 2012
  - mirror neutrons Coc+ 2013
  - magnetic fields+decays Yamazaki+ 2014
  - lepton asymmetry (degenerate neutrinos) Makki+ 2019
  - light particles with nucleon interactions Goudelis+ 2016
  - sterile neutrinos Salvati+ 2016
  - axion quark nuggets Flambaum+ 2019
  - Stable <sup>8</sup>Be Scherrer+ 2017
  - Non-extensive statistics Hou+ 2017
- Evolving Fundamental Constants
- Nonstandard Cosmology

  - Lithium diffusion after recombination Pospelov 2012 - "Hubble bubble" of inhomogeneous abundances Regis+ 2010 - Cosmic deuterium destruction via early stellar processing Piau+ 2006 - Nonthermal "cosmic rays" during BBN Kang+ 2019







# Lithium is Primordial But is Spite Plateau the primordial value?

## **The Worry:**

**Convection** can lead to Li destruction

#### **The Fix:**

★select stars with thin convection zone
★empirically show largest Li levels
★consistent with thin Spite plateau







- huge increase in scatter at low [Fe/H]
- at least some stars efficiently eat lithium
- why does meltdown "turn on"?
- ho points scatter up to BBN+CMB abundance

## Update: Nuclear Meltdown Sbordone+ 2010

2.6

2.4

2.2

2.0

1.8

1.6

unq

A(LI)



CMB+BBN prediction lithium desert?



## <sup>6</sup>Li Constraints on Depletion



log(iron abundance): "time"

## <sup>6</sup>Li found in two stars... then claimed in more

## More fragile than <sup>7</sup>Li

## <sup>6</sup>Li survival means <sup>7</sup>Li depletion small

**BDF & Olive 99** 







## **Cosmic Rays interact with ISM Interstellar gas: beam dump**

- Observe in gamma-ray sky
- Charged pions: IceCube signal
- Stable debris created



#### **Spallation**

#### **Fusion:**

## **Cosmic-Ray Nucleosynthesis of LiBeB**

Reeves, Fowler, Hoyle 1970; Meneguzzi, Audouze, Reeves 1971; Walker, Mathews, Viola

#### →Wang+ 2021: highprecision spectroscopy

no <sup>6</sup>Li signal as previously claimed

Removes <sup>6</sup>Li argument against depletion

No longer confident Li plateau is primordial level

# Update: <sup>6</sup>Li Vanishes



# Implications: Lithium Problem Solved?

- **Good news-without lithium problem...**
- agreement with many stellar evolution models • BBN says hot big bang works back to 1 sec BBN+CMB concordance = cosmo triumph probes dark matter & other new physics

**Bad news-Li unreliable for cosmo** ... for now. Clever ideas needed!



## No Lithium Worries? BBN Probes New Physics



## **Dark Matter**

**Census of cosmic matter** 

- **BBN:** baryons  $\mathbf{\star}$
- **CMB: all gravitating matter**
- **Optical galaxy surveys: luminous matter**

**Mismatch demands dark matter: two kinds!** 

#### **Baryonic Dark Matter:**

most (?) is hot intergalactic gas

Fukugita, Hogan, Peebles; Cen & Ostriker; Dave etal

Mon-paryonic dark matter demands physics beyond the Standard Model!

**Non-Baryonic Dark Matter:** 

most of cosmic matter



**All Matter** 



Luminous Weateer



**Bullet Cluster** 



Fang, Canizares, & Yao 07

## **BBN Probes New Physics**

Predicted Lite elements sensitive to expansion history during BBN Rate  $(expansion)^2 = H^2 \sim G\rho_{tot,rel}$ Controlled by  $\rho_{tot,rel} = \rho_{EM} + N_{\nu,eff} \rho_{\nu\bar{\nu}}$ Observed Lite Elements Constrain anything that

**Couples to gravity** 

Perturbs relativistic energy density

Stiegman, Schramm, & Gunn 77

All light elements sensitive to  $N_{\nu, eff}$ New! D/H now an interesting probe 7Li shift right direction but small

New! CMB damping tail can probe all of  $\eta ~ N_{\nu, \rm eff} ~ {}^4{\rm He}$  clean test of BBN



Cyburt, BDF, Olive, Yeh 2015



葉宗翰

## Planck 2018 + BBN BDF, Olive, Yeh, Young 2020







#### Tsung-Han Yeh 葉宗翰



Number of Neutrinos,  $N_{\nu}$ 

# $N_ u = 2.898 \pm 0.141$ $N_ u < 3.180$ (2 $\sigma$ )

Number of Neutrinos,  $N_{\nu}$ 

Consistent with the Standard Model! Implications for, e.g., right-handed neutrinos
dark radiation
stochastic gravitational waves
tracker fields
primordial magnetism



## **Searching for New Physics Between BBN & CMB** Yeh, Shelton, Olive, BDF 2022

#### **Tsung-Han Yeh** 葉宗翰

#### **Big-Bang Nucleosynthesis (BBN)** t~1 sec, T~1 MeV nuclear physics

**Cosmic Microwave Background (CMB)** t~400,000 yr; T~1 eV atomic physics

#### Now *independently* probe

- baryon-to-photon ratio  $\left(\frac{n_{\rm B}}{n_{\gamma}}\right)_{\rm BBN} = \left(\frac{n_{\rm B}}{n_{\gamma}}\right)_{\rm CMB}$ usual cosmo:
- effective number of neutrino species  $N_{\nu}^{\rm BBN} = N_{\nu}^{\rm CMB}$ usual cosmo:



Wagoner, Fowler, & Hoyle 1967; Yeh, BDF, & Olive 2021



**Jessie Shelton** 

Penzis & Wilson 1965; Planck 2018

## no important photon (entropy) production

#### no change\* in relativistic degrees of freedom

\*aside from e+e- neutrino heating  $N_{eff}^{CMB} = N_{\nu}^{CMB} + 0.044$ 





Yeh, Shelton, Olive, BDF 2022



- **Consistent with** standard cosmology Implications for, e.g. early dark energy models for H<sub>0</sub> problem relativistic relic becoming hønrelativistic
  - late equilibrium with neutrinos



# Limits on Baryon-to-Photon Change



#### Yeh, Shelton, Olive, BDF 2022

**Consistent with** standard cosmology



# Limits on Change in Both



![](_page_33_Figure_1.jpeg)

Yeh, Shelton, Olive, BDF 2022

![](_page_33_Picture_3.jpeg)

![](_page_34_Picture_0.jpeg)

#### Tsung-Han Yeh 葉宗翰

![](_page_34_Picture_2.jpeg)

Nachiketa Chakraborty

![](_page_34_Picture_4.jpeg)

![](_page_34_Picture_6.jpeg)

**Keith Olive** 

![](_page_34_Picture_8.jpeg)

**Jessie Shelton** 

![](_page_34_Picture_10.jpeg)

**John Ellis** 

- **Convergence of Nuclear/Particle Physics and Cosmology** successes of both point to larger, deeper picture
- theory & experiment tightly linked: e.g.,  $d(p,\gamma)^3$ He

#### **Lithium Problem Resolved?**

- nuclear physics solutions ruled out
- new physics solutions highly constrained
- stellar depletion supported by <sup>6</sup>Li non-detections

#### **BBN & CMB:** Probes of Fundamental Physics

- basic concordance: big bang working to t~1 sec **BBN + CMB probe dark matter, neutrinos, new physics...**

#### **The Future is Bright:**

- Need precision cross sections for  $d(d, n)^3$ He  $d(d, p)^3$ H **Even better CMB measurements (S4)**
- **Stellar models for Li depletion & interplay with cosmic-ray nuke** New light element measures: stellar, interstellar, extragalactic <sup>6,7</sup>Li **Closer interplay with dark matter & accelerator physics**
- **Stay Tuned!**

## OUTLOOK

![](_page_34_Figure_29.jpeg)