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Introduction

MC tuning: a necessary evil!
I Experiments need good data-description
I And ab initio theory needs to be

comparable with data
⇒ fitting pheno models to data (cf. PDFs!)

Professor is numerical machinery frequently
used to aid MC generator tuning. Used by
Sherpa, Herwig, ATLAS, CMS. . .

Data and models aren’t perfect: need to
estimate tune systematics. Methods exist, but
large arbitrariness

In this talk: overview of tuning
methodology, and putting tune systematics
on a statistically sound footing
And re-learning basic statistics! (cf. PDFs!)

Andy Buckley 2/22



Context

Think back to 2008-2012: new collider, very new energy regime, even
∼ 100% uncertainty on σpp

tot!

⇒ Flurry of new tunes & methods. First PYTHIA6, then Py8 and other
C++ gens. Eventually Monash and ATLAS/CMS tunes for Py8, author
tunes for Herwig and Sherpa

First tuning heyday has passed! Core tunes largely sufficient, except:

I MB/UE model tensions – e.g. pile-up modelling
I Strange and heavy-flavour production / challenges to

hadronisation universality
I Perturbative tuning, e.g. Powheg HDAMP, specialist DY tunes,

matched tunes

For most purposes, SHG default tunes are decent data proxies. But
Run 3 & HL-LHC ⇒ new pressure on MC
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The Professor method

I MC is slow: & 1 CPU-day per run
⇒ can’t use in serial optimisation.

I Simple solution: trivially parallelise MC
runs through ranges of parameter space,
and use sampled points to interpolate
each bin’s param dependence. Up to
O(15) params.

I Usually use SVD polynomial fits –
requires that values vary in a polynomial
fashion or are transformed to do so. Not
fundamental.

I Fast analytic interpolations
⇒ serial minimisation of an objective
function. Typically pseudo-χ2

I Available as public C++/Python code
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Goodness-of-fit and systematics

I Usually optimise a simple pseudo-χ2:

χ2(~p) =
∑

b

w2
b

( fb(~p)− ref b)
2

∆ref 2
b + ∆f 2

b (~p) + ε2

I Note weights wb and regularising ε.
Correlations possible, but rarely
available. Parametrisation error
∆fb(~p) probably an overestimate

I GoF defines the best fit: can we get
systematics from its shape? Yes:
eigentunes, cf. PDF eigenvectors.

Maximally orthogonal error sources

Reasonable number (ish)

But: in practice, ∆χ2 tolerance
rules don’t work. . .
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Toy model

Let’s explore the basic statistics a bit, so we know what we’re doing.

Toy model to both generate pseudodata and tune:
yb = p0/(p1 + xb)
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Failure of the χ2 construction

I A true χ2 statistic will be described by a chi-square
distribution with an appropriate number of degrees of
freedom.

I If each of Nb bins fluctuates independently, that’s Nb degrees of
freedom. The Professor fitting to noisy data using Np params
reduces it to k = Nb −Np, e.g. in this 2-param fit:

0 10 20 30 40 50
2

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07 2(k = Nbin)
2(k = Nbin 2)

Smear only
Smear+fit

Andy Buckley 9/22



Failure of the χ2 construction

I A true χ2 statistic will be described by a chi-square
distribution with an appropriate number of degrees of
freedom.

I This gets broken by correlations – from shared kinematics,
normalisations, and experimental systematics:
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Failure of the χ2 construction

I A true χ2 statistic will be described by a chi-square
distribution with an appropriate number of degrees of
freedom.

I And bigger correlations. . . note χ2 reducing since fewer true d.o.f
as correlations get stronger:
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Failure of the χ2 construction

I A true χ2 statistic will be described by a chi-square
distribution with an appropriate number of degrees of
freedom.

I Perhaps more importantly, χ2 scaling is only true if the model can
describe all the data – what if we break it? (fit wrong exponent)
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Failure of the χ2 construction

I A true χ2 statistic will be described by a chi-square
distribution with an appropriate number of degrees of
freedom.

I Real generator scaling looks more like model or data tension:

x = Φ2 (Pythia8) Ndf = 24
x = χ2

k=24
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Failure of the χ2 construction

I A true χ2 statistic will be described by a chi-square
distribution with an appropriate number of degrees of
freedom.

I And ∆χ2 also fails: idea is that bin fluctuations cancel, so k ∼ Np,
but much larger.⇒ ATLAS A14 eigentunes done by eye:
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Bootstrap to victory

Recap:

I real MC generator χ2 distributions don’t scale as chi-squared
I due to a mix of unknown correlations, and incomplete models

(and data tensions. . . )
I ⇒ usual recipe fails

But we don’t need
chi-squared scaling: how
about using empirical
test-stat intervals?

Introduce bootstrap
smearing (again cf. PDFs!):
re-sample many replicas
from distribution bins, and
find best φ2 = χ2/2
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But: best-fit will also be outside the CL some fraction of the time
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Better tuning errors from the bootstrap

So ignore the φ2 after fitting: just work with the replica distribution

Can be the end of the story for PDFs, but not for tunes: can’t cheaply
reweight an MPI or hadronisation tune

Need to reduce, maybe cf. mc2hessian
[arXiv:1505.06736] but needs a basis: ok for
1-variable PDFs, not for general MCs

Instead, construct Hessian ellipsoid to
give CL coverage of replicas:
I Centre from nominal best-fit or mean

of replicas
I Orientation and aspect from

minimiser covariance or replica
covariance

I Take intersections of principle axes
with ellipse as 2Np error tunes
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Applications

First the toy model:
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Lack of correlations in φ2 may bias the tune params to non-ideal places,
but naïve data coverage is good. . . note correlation effect
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Applications

And a real application (3-param Pythia 8 UE tune, concatenated vars):
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Model limitations more important than correlations here

Andy Buckley 20/22



More methodology improvements

Several other developments ongoing, interesting for “next round”
tunes:

I Padé rational approximants: for non-polynomial
parameter-dependence (of yi(~p), not y(xi))

I Auto-tuning / portfolio “metatuning”: attempt to reduce
arbitrariness of parameter weight choices. Really possible, or at
risk of being driven by latent biases?

I Error-tune dimensional reduction: more robust wanted /
needed? cf. ATLAS A14 procedure

I Correlations: can try post-hoc estimation of correlations by MC
Poisson bootstrap – but far better that this comes from the
experiments
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Summary & outlook

I MC tuning not very active right now, but precision data
challenges MC in new areas: it will return!

I Professor is a well-established tool to aid in many-parameter MC
tuning. Not a replacement for physics awareness.

I Also uses in BSM fitting and model exploration: it’s all fitting!
cf. unfolding, PDFs, . . .

I Eigentunes also quite established, but dirty secret of arbitrary ∆χ2

tolerance

I Simple statistical toys show the issues, and lead to a way forward
through empirical φ2 bootstrapping, and a new, coverage-based
eigentune construction

I Looks good on toy model, needs some debugging in real-data
case, but should be complete soon

I Other methodology developments, and experimental
correlation-culture⇒ ready for the next phase
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