Evolving MC tuning methodology: robust estimation of tune uncertainties

Andy Buckley, University of Glasgow Holger Schulz, FNAL / University of Cincinnati QCD@LHC 2019, Buffalo, 15 July 2019

Introduction

MC tuning: a necessary evil!

- Experiments need good data-description
- And *ab initio* theory needs to be comparable with data

\Rightarrow fitting pheno models to data (cf. PDFs!)

Professor is numerical machinery frequently used to aid MC generator tuning. Used by Sherpa, Herwig, ATLAS, CMS...

Data and models aren't perfect: need to estimate tune systematics. Methods exist, but large arbitrariness

In this talk: overview of tuning methodology, and putting tune systematics on a statistically sound footing And re-learning basic statistics! (cf. PDFs!)

Context

Think back to 2008-2012: new collider, very new energy regime, even $\sim 100\%$ uncertainty on σ_{tot}^{pp} !

⇒ Flurry of new tunes & methods. First PYTHIA6, then Py8 and other C++ gens. Eventually Monash and ATLAS/CMS tunes for Py8, author tunes for Herwig and Sherpa

First tuning heyday has passed! Core tunes largely sufficient, except:

- MB/UE model tensions e.g. pile-up modelling
- Strange and heavy-flavour production / challenges to hadronisation universality
- Perturbative tuning, e.g. Powheg HDAMP, specialist DY tunes, matched tunes

For most purposes, SHG default tunes are decent data proxies. But Run 3 & HL-LHC \Rightarrow new pressure on MC

The Professor method

- MC is slow: ≥ 1 CPU-day per run ⇒ can't use in serial optimisation.
- Simple solution: trivially parallelise MC runs through ranges of parameter space, and use sampled points to interpolate each bin's param dependence. Up to O(15) params.
- Usually use SVD polynomial fits requires that values vary in a polynomial fashion *or are transformed to do so.* Not fundamental.
- ► Fast analytic interpolations ⇒ serial minimisation of an objective function. Typically pseudo-χ²
- Available as public C++/Python code

Goodness-of-fit and systematics

• Usually optimise a simple pseudo- χ^2 :

$$\chi^2(\vec{p}) = \sum_b w_b^2 \frac{(f_b(\vec{p}) - \operatorname{ref}_b)^2}{\Delta \operatorname{ref}_b^2 + \Delta f_b^2(\vec{p}) + \epsilon^2}$$

- Note weights w_b and regularising ϵ . Correlations possible, but rarely available. Parametrisation error $\Delta f_b(\vec{p})$ probably an overestimate
- GoF defines the best fit: can we get systematics from its shape? Yes: *eigentunes*, cf. PDF eigenvectors.
 - Maximally orthogonal error sources
 - Reasonable number (ish)
 - **But:** in practice, $\Delta \chi^2$ tolerance rules don't work...

Toy model

Let's explore the basic statistics a bit, so we know what we're doing.

Toy model to both generate pseudodata and tune: $y_b = p_0/(p_1 + x_b)^2$

Correlation modes from "none" to "mad"

Toy model

Let's explore the basic statistics a bit, so we know what we're doing.

Toy model to both generate pseudodata and tune: $y_b = p_0/(p_1 + x_b)^2$

Correlation modes from "none" to "mad"

Toy model

Let's explore the basic statistics a bit, so we know what we're doing.

Toy model to both generate pseudodata and tune: $y_b = p_0/(p_1 + x_b)^2$

Correlation modes from "none" to "mad"

- A true χ² statistic will be described by a chi-square distribution with an appropriate number of degrees of freedom.
- If each of N_b bins fluctuates independently, that's N_b degrees of freedom. The Professor fitting to noisy data using N_p params reduces it to k = N_b N_p, e.g. in this 2-param fit:

- A true χ² statistic will be described by a chi-square distribution with an appropriate number of degrees of freedom.
- This gets broken by correlations from shared kinematics, normalisations, and experimental systematics:

- A true χ² statistic will be described by a chi-square distribution with an appropriate number of degrees of freedom.
- And bigger correlations... note χ^2 *reducing* since fewer true d.o.f as correlations get stronger:

- A true χ² statistic will be described by a chi-square distribution with an appropriate number of degrees of freedom.
- Perhaps more importantly, χ^2 scaling is only true if the model *can* describe all the data what if we break it? (fit wrong exponent)

- A true χ² statistic will be described by a chi-square distribution with an appropriate number of degrees of freedom.
- Real generator scaling looks more like model or data tension:

- A true χ² statistic will be described by a chi-square distribution with an appropriate number of degrees of freedom.
- And $\Delta \chi^2$ also fails: idea is that bin fluctuations cancel, so $k \sim N_p$, but much larger. \Rightarrow ATLAS A14 eigentunes done by eye:

Bootstrap to victory

Recap:

- ▶ real MC generator χ^2 distributions don't scale as chi-squared
- due to a mix of unknown correlations, and incomplete models (and data tensions...)
- $\blacktriangleright \Rightarrow usual recipe fails$

But we don't need chi-squared scaling: how about using empirical test-stat intervals?

Introduce bootstrap smearing (again cf. PDFs!): re-sample many replicas from distribution bins, and find best $\phi^2 = \chi^2/2$

But: best-fit will also be outside the CL some fraction of the time

Better tuning errors from the bootstrap

So *ignore* the ϕ^2 after fitting: just work with the replica distribution

Can be the end of the story for PDFs, but not for tunes: can't cheaply reweight an MPI or hadronisation tune

Need to reduce, maybe cf. mc2hessian [arXiv:1505.06736] but needs a *basis*: ok for 1-variable PDFs, not for general MCs

Instead, construct Hessian ellipsoid to give CL coverage of replicas:

- Centre from nominal best-fit or mean of replicas
- Orientation and aspect from minimiser covariance or replica covariance
- Take intersections of principle axes with ellipse as 2N_p error tunes

First the toy model:

Lack of correlations in ϕ^2 may bias the tune params to non-ideal places, but naïve data coverage is good...note correlation effect

First the toy model:

Lack of correlations in ϕ^2 may bias the tune params to non-ideal places, but naïve data coverage is good...note correlation effect

First the toy model:

Lack of correlations in ϕ^2 may bias the tune params to non-ideal places, but naïve data coverage is good...note correlation effect

And a real application (3-param Pythia 8 UE tune, concatenated vars):

Model limitations more important than correlations here

More methodology improvements

Several other developments ongoing, interesting for "next round" tunes:

- ▶ Padé rational approximants: for non-polynomial parameter-dependence (of $y_i(\vec{p})$, not $y(x_i)$)
- Auto-tuning / portfolio "metatuning": attempt to reduce arbitrariness of parameter weight choices. Really possible, or at risk of being driven by latent biases?
- Error-tune dimensional reduction: more robust wanted / needed? cf. ATLAS A14 procedure
- Correlations: can try post-hoc estimation of correlations by MC Poisson bootstrap – but *far* better that this comes from the experiments

Summary & outlook

- MC tuning not very active right now, but precision data challenges MC in new areas: it will return!
- Professor is a well-established tool to aid in many-parameter MC tuning. Not a replacement for physics awareness.
- Also uses in BSM fitting and model exploration: it's all fitting! cf. unfolding, PDFs, ...
- Eigentunes also quite established, but dirty secret of arbitrary $\Delta \chi^2$ tolerance
- Simple statistical toys show the issues, and lead to a way forward through empirical \u03c6² bootstrapping, and a new, coverage-based eigentune construction
- Looks good on toy model, needs some debugging in real-data case, but should be complete soon
- ► Other methodology developments, and experimental correlation-culture ⇒ ready for the next phase