

Event Generator Tuning in the CMS Experiment

Sercan SEN (on behalf of the CMS Collaboration)

HSF Event Generator Tuning Workshop

27-28 June, 2023

CMS Event Generator Tunes (7 TeV)

CUETP8 S1/M1 (PYTHIA8)

- S1 tunes based on 4C (CTEQ6L1)
 - CUETP8S1-CTEQ6L1
 - CUETP8S1-HERAPDF1.5LO
- M1 tune based on Monash (NNPDF2.3LO)
 - CUETP8M1

CUETP6S1 (PYTHIA6)

- S1 tunes based on PYTHIA6 Z2*lep (CTEQ6L1)
 - CUETP6S1-CTEQ6L1
 - CUETP6S1-HERAPDF1.5LO

CUETHppS1 (HERWIG++)

CUETHppS1 tune using CTEQ6L1 based on Herwig++ Tune UE-EE-5C.

CUETHppS1

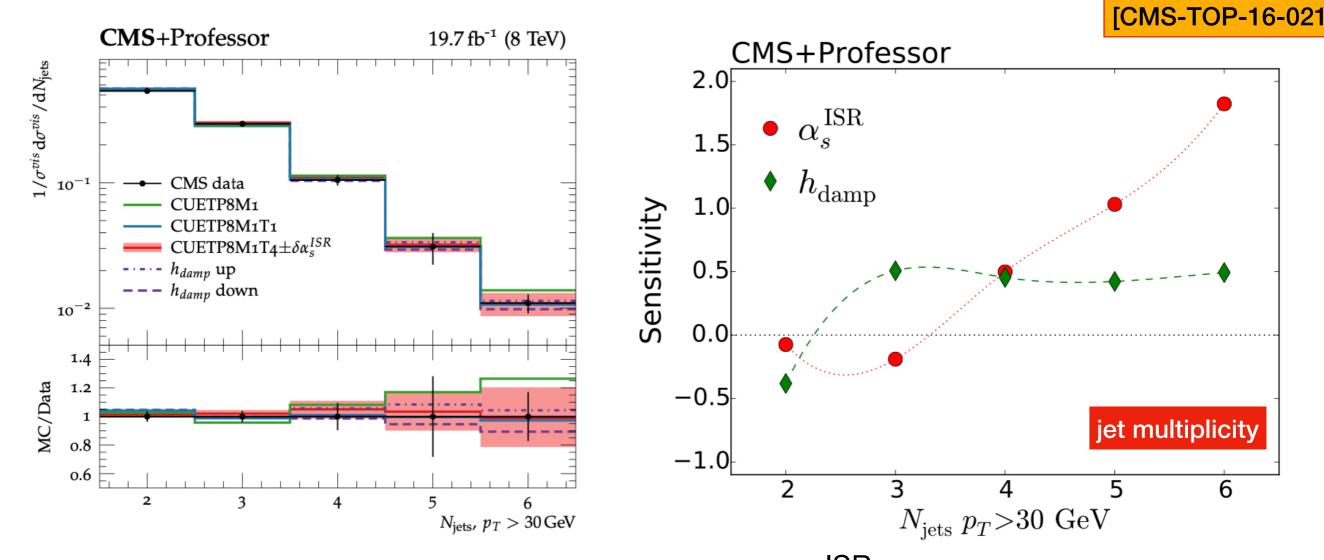
CDPSTP8 S1/S2 (PYTHIA8)

DPS observables in W+dijet and 4j events

- CDPSTP8S1-Wj
- CDPSTP8S1-Wj only expPow tuned
 CDPSTP8S1-4j
- CDPSTP8S2-Wj
- CDPSTP8S2-4j
- all MPI+CR parameters tuned

expPow: matter overlap, most sensitive to $\sigma_{\rm eff}$

[CMS-GEN-14-001], EPJC 76, 155 (2016)


"CUET" stands for CMS Underlying Event tune "CPDS" stands for CMS DPS (Double Parton Scattering) tune

- CUETP8M1 used for legacy production at 7 TeV
- tuning of MPI + CR parameters to MB & UE observables at 0.9, 1.96 (CDF), 7 TeV
- DPS tunes are obtained by tuning of MPI + CR parameters to <u>DPS observables</u>
- validation of the tunes at various final states and c.o.m. energies.
- studied predictions for 13 TeV
- provided tune uncertainties
- calculated $\sigma_{\rm eff}$ (DPS)
- Rivet + Professor

 $\sigma_{\rm AB} = \frac{\sigma_{\rm A}\sigma_{\rm B}}{\sigma_{\rm eff}}$

JE tunes

CUETP8M2T4 ($\alpha_s^{ISR} + h_{damp}$ tuning)

Additional jet multiplicity (Njets) in ttbar depends on α_s^{ISR} and ME/PS matching hdamp

- CUETP8M2T4: based on CUETP8M1.
- tuning of Powheg+Pythia ISR to ttbar events at 8 TeV + retune of MPI parameters to 13 TeV (ecmPow fixed to the value of CUETP8M1)
- Describes Njets in ttbar better than Powhegv2 + PYTHIA8 CUETP8M1.
- $\alpha_s^{\text{ISR}} = 0.1108^{+0.0145}_{-0.0142}$ (cf. in CUETP8M1 (Monash-based) tune $\alpha_s^{\text{ISR}} = 0.1365$)

CMS Event Generator Tunes (13 TeV)

CP (CMS PYTHIA8) tunes

[CMS-GEN-17-001], EPJC 80, 4 (2020)

- CP1 / CP2: NNPDF 3.1 LO + α_{s} = 0.1365/0.130 (Monash/PDF value)
- CP3 / CP4 / CP5: NNPDF 3.1 (N)NLO + $\alpha_{\rm S}$ = 0.118 consistent with PDF and ME

CH (CMS Herwig7) tunes

[CMS-GEN-19-001], EPJC 81, 312 (2021)

NNPDF 3.1 NNLO PDF for PS.

 $\alpha_{s(m_Z)} = 0.118$, $\alpha_{s^{PDF}(m_Z)} = 0.118$; LO or NNLO for MPI and beam remnants;

- CH1: NNLO
- CH2: LO
- CH3: LO

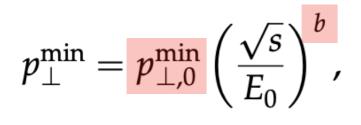
CP CR (Colour Reconnection) tunes

[CMS-GEN-17-002], arXiv:2205.02905, accepted by EPJC

- CP5-CR1 (QCD-inspired CR model)
- CP5-CR2 (gluon-move CR model)

LO CR tunes:

- CP1-CR1
- CP2-CR1


- CP5 used for legacy production at 13 TeV
- tuning of MPI + CR parameters to MB & UE observables at 1.96 (CDF), 7, and 13 TeV
- better description of the data when

 α_{S^{ISR}}(m_Z)=0.118 is used (i.e. CP3-CP5 tunes)
- validation of the tunes at various final states and c.o.m. energies.
- up/down tunes
- Rivet + Professor + MCPLOTSCMS

Colour Reconnection (CR)

tunes

UE model: main parameters

$$\langle n \rangle = A(d)\sigma(s), \quad A(d)\sigma(s),$$

$$d) = \frac{\mu^2}{96\pi} (\mu d)^3 K_3,$$

*E*₀: reference energy *b*: energy dependence of p_{\perp}^{\min} $\langle n \rangle$: mean number of additional interactions

 μ^2 : inverse proton radius squared

In PYTHIA8: a double Gaussian matter distribution, with the two free parameters *coreRadius* and *coreFraction*.

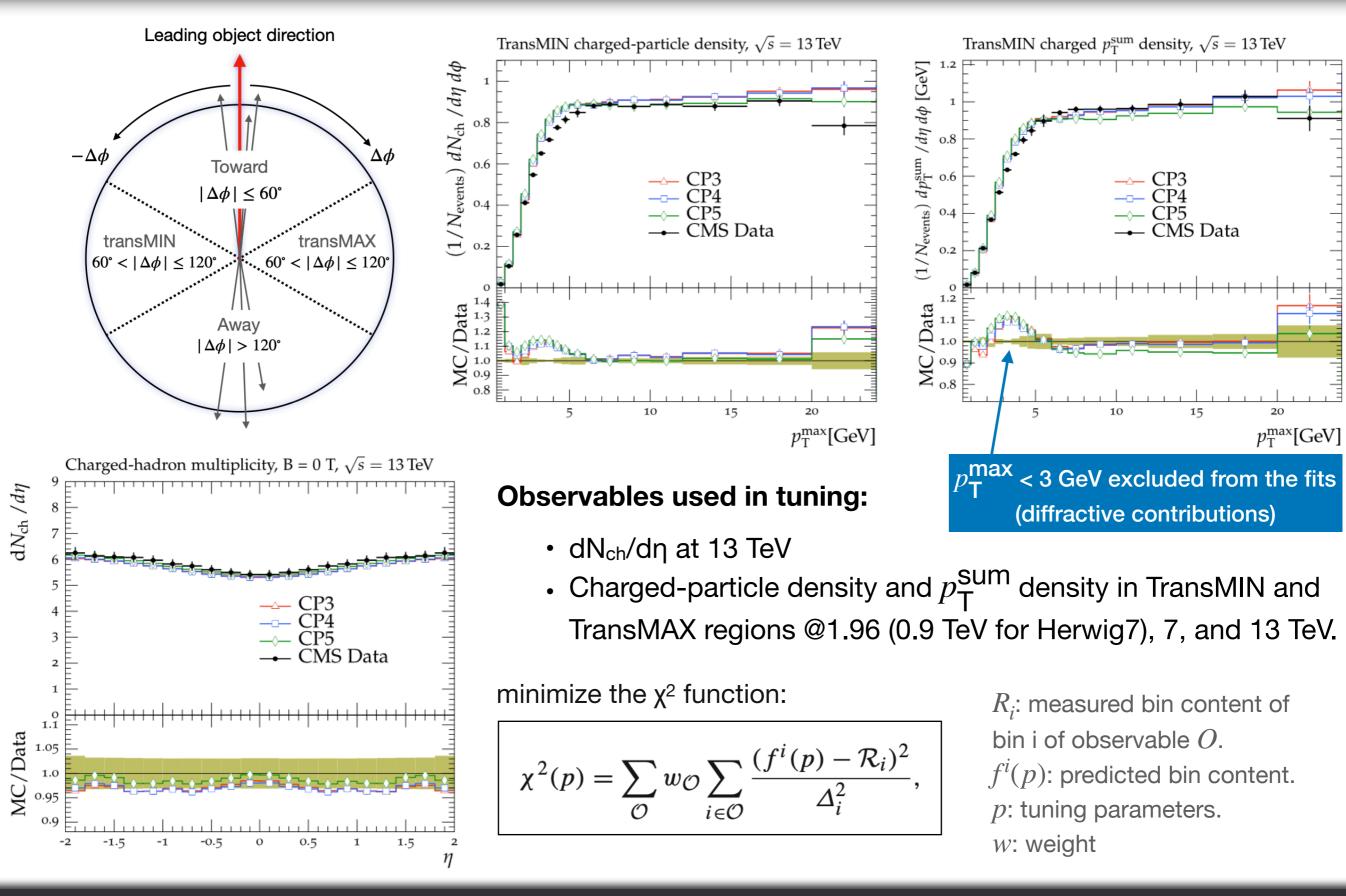
- **1. p**_T threshold parameter (p_{\perp}^{min}) to govern transition between soft and hard interactions. lower threshold \rightarrow more MPI (UE activity).
- **2. energy dependence** of p_{\perp}^{min}
- 3. overlap distribution between two colliding protons

denser overlap \rightarrow more MPI.

- $(\mu^2$ in Herwig, coreFraction/coreRadius in PYTHIA8)
- 4. colour reconnection probability

HERWIG 7.1

Parameter	HERWIG 7 configuration parameter
$p_{\perp,0}^{\min}$ (GeV)	/Herwig/UnderlyingEvent/MPIHandler:pTmin0
b	/Herwig/UnderlyingEvent/MPIHandler:Power
μ^2 (GeV ⁻²)	/Herwig/UnderlyingEvent/MPIHandler:InvRadius
Preco	/Herwig/Hadronization/ColourReconnector:ReconnectionProbability


 p_{reco} : Colour reconnection probability for accepting a proposed reconnection. Plain CR model (default).

PYTHIA 8.2

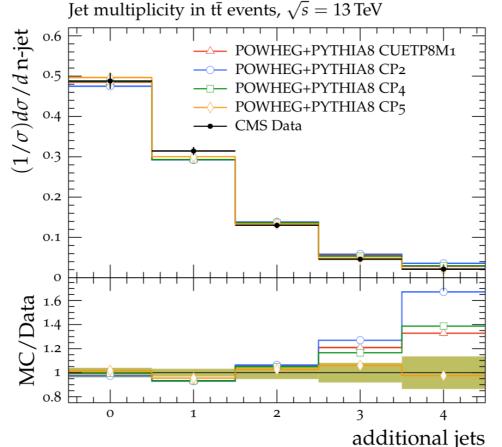
Parameter description	Name in PYTHIA8
MPI threshold (GeV), pT0Ref, at $\sqrt{s} = \sqrt{s_0}$	MultipartonInteractions:pT0Ref
Exponent of \sqrt{s} dependence, ϵ	MultipartonInteractions:ecmPow
Matter fraction contained in the core	MultipartonInteractions:coreFraction
Radius of the core	MultipartonInteractions:coreRadius
Range of color reconnection probability	ColorReconnection: range

ColourReconnection:range probability for accepting a proposed reconnection. MPI-based model (default).

CMS UE tunes: tuning procedure

Sercan Sen

6/16

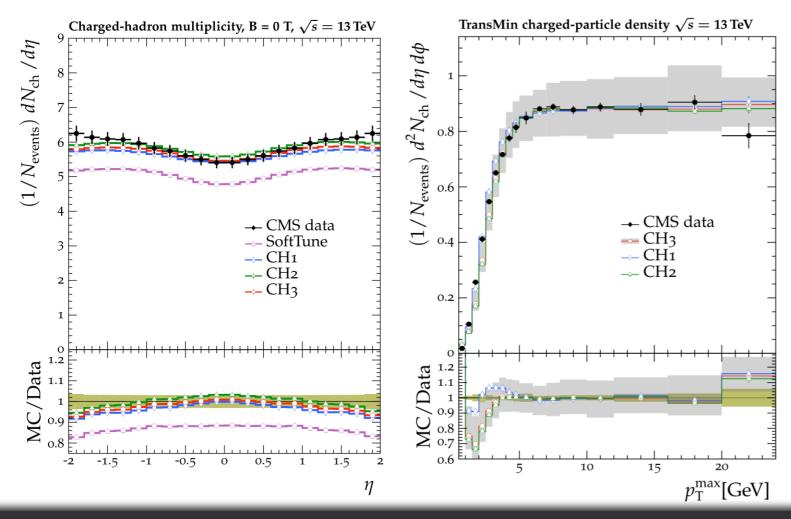

HSF Event Generator Tuning Workshop

CP (CMS PYTHIA8) UE tunes


PYTHIA8 parameter	CP1	CP2	CP3	CP4	CP5
PDF Set	NNPDF3.1 LO	NNPDF3.1 LO	NNPDF3.1 NLO	NNPDF3.1 NNLO	NNPDF3.1 NNLO
$\alpha_S(m_Z)$	0.130	0.130	0.118	0.118	0.118
SpaceShower:rapidityOrder	Off	Off	Off	Off	On
MultipartonInteractions:EcmRef(GeV)	7000	7000	7000	7000	7000
$\alpha_S^{\text{ISR}}(m_Z)$ value/order	0.1365/LO	0.130/LO	0.118/NLO	0.118/NLO	0.118/NLO
$\alpha_S^{\text{FSR}}(m_Z)$ value/order	0.1365/LO	0.130/LO	0.118/NLO	0.118/NLO	0.118/NLO
$\alpha_{S}^{MPI}(m_{Z})$ value/order	0.130/LO	0.130/LO	0.118/NLO	0.118/NLO	0.118/NLO
$\alpha_{S}^{ME}(m_{Z})$ value/order fitted parameters	0.130/LO	0.130/LO	0.118/NLO	0.118/NLO	0.118/NLO
MultipartonInteractions:pT0Ref(GeV)	2.4	2.3	1.52	1.48	1.41
MultipartonInteractions:ecmPow	0.15	0.14	0.02	0.02	0.03
MultipartonInteractions:coreRadius	0.54	0.38	0.54	0.60	0.76
MultipartonInteractions:coreFraction	0.68	0.33	0.39	0.30	0.63
ColorReconnection:range	2.63	2.32	4.73	5.61	5.18
χ^2/dof	0.89	0.54	0.76	0.80	1.04

CP5: default CMS PYTHIA8 UE tune for 13 TeV. NNPDF 3.1 NNLO, α_S = 0.118 for ISR, FSR, MPI, ME, consistent with PDF.

 RapidityOrdering for ISR reduces phase space for parton emission. Makes a big difference in POWHEG+PYTHIA8. Njets in ttbar best described by CP5.



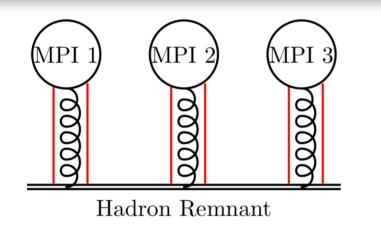
TransMIN charged-particle density, $\sqrt{s} = 13 \text{ TeV}$

CH (CMS Herwig7) UE tunes

		SoftTune	^	CH1	CH2	CH3
$\alpha_{\rm S}(m_{\rm Z})$		0.1262		0.118	0.118	0.118
PS	PDF set	MMHT2014 LO		NNPDF3.1 NNLO	NNPDF3.1 NNLO	NNPDF 3.1 NNLO
	$\alpha_{\rm S}^{\rm PDF}(m_{\rm Z})$	0.135		0.118	0.118	0.118
MPI &	PDF set	MMHT 2014 LO		NNPDF3.1 NNLO	NNPDF3.1 LO	NNPDF 3.1 LO
remnants	$\alpha_{\rm S}^{\rm PDF}(m_{\rm Z})$	0.135		0.118	0.118	0.130
$p_{\perp,0}^{\min}$ (GeV)]	3.502		2.322	3.138	3.040
b		0.416 Equiv	alent	0.157	0.120	0.136
μ^2 (GeV ⁻²)	China - I	1.402 to C	P5	1.532	1.174	1.284
$p_{ m reco}$	fitted parameters	0.5		0.400	0.479	0.471
$\chi^2/N_{\rm dof}$		12.8		6.75	1.54	1.71

- LO PDF for MPI and beam remnants preferred over NNLO PDF
- Choice of α_s in PDF less important, but $\alpha_s = 0.130$ is typically associated with LO PDF sets.
- CH3 preferred choice over CH2. Up/down tunes for CH3 provided.
- CH tunes increase amount of MPI w.r.t SoftTune. All CH tunes describe dN_{ch}/dη.

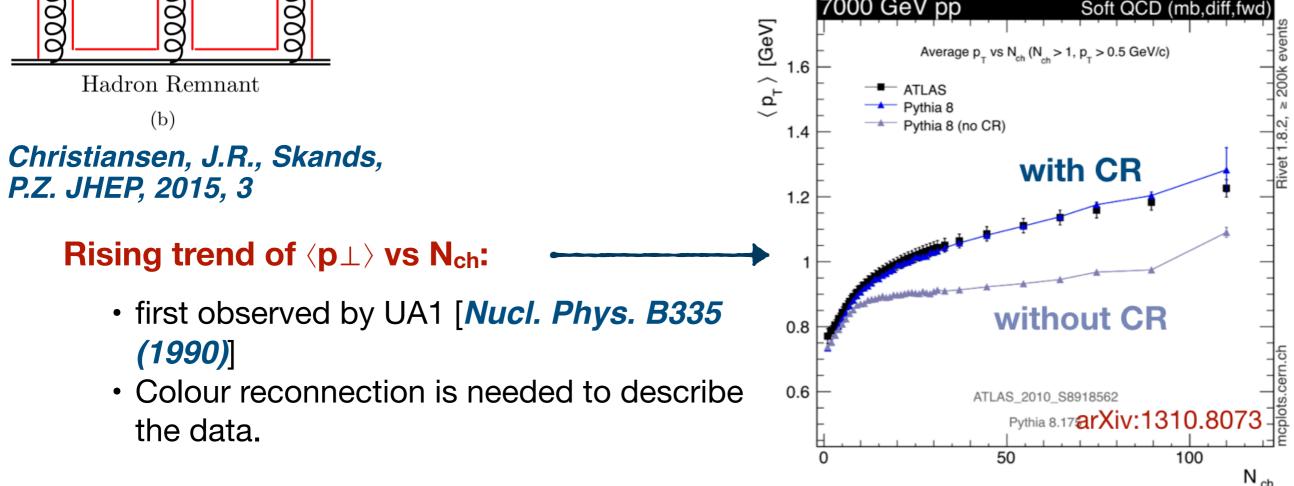
8/16

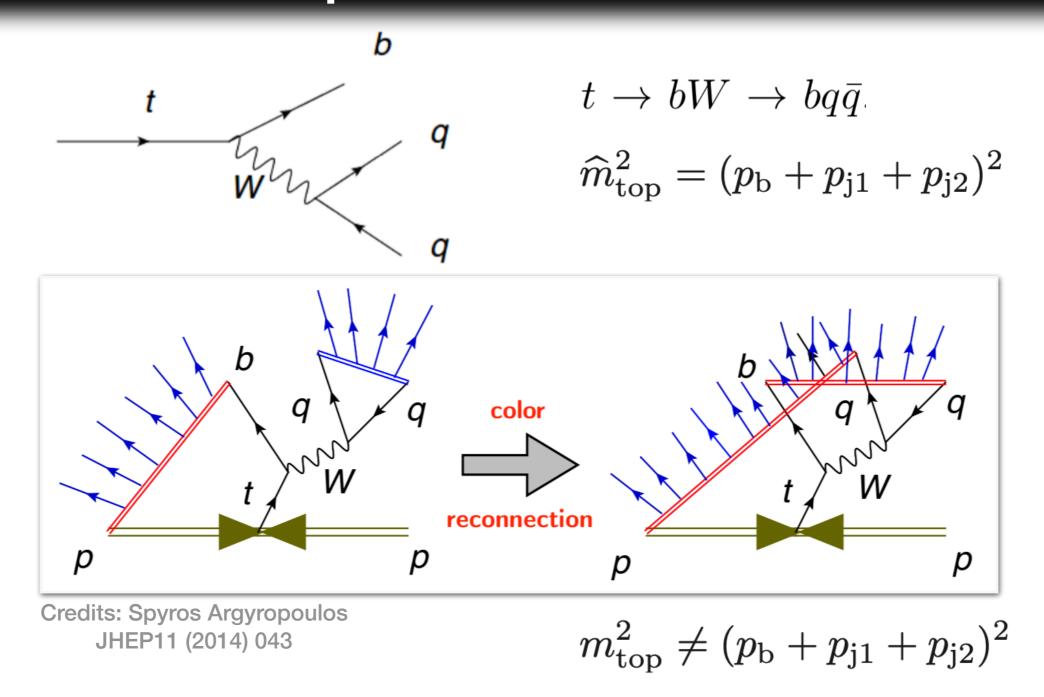


CP5 based CR (Colour Reconnection) tunes

[CMS-GEN-17-002], arXiv:2205.02905

Eur. Phys. J. C Accepted: 16 May 2023


What is **Colour** Reconnection?


Leading colour (LC) approximation:

- Each MPI is viewed as separate from all other systems in colour space.
- No strings stretched between different MPI systems.

Color reconnection allows different MPI systems to be colourconnected to each other. **MPI hadronize collectively**.

Effect of CR on *m*top

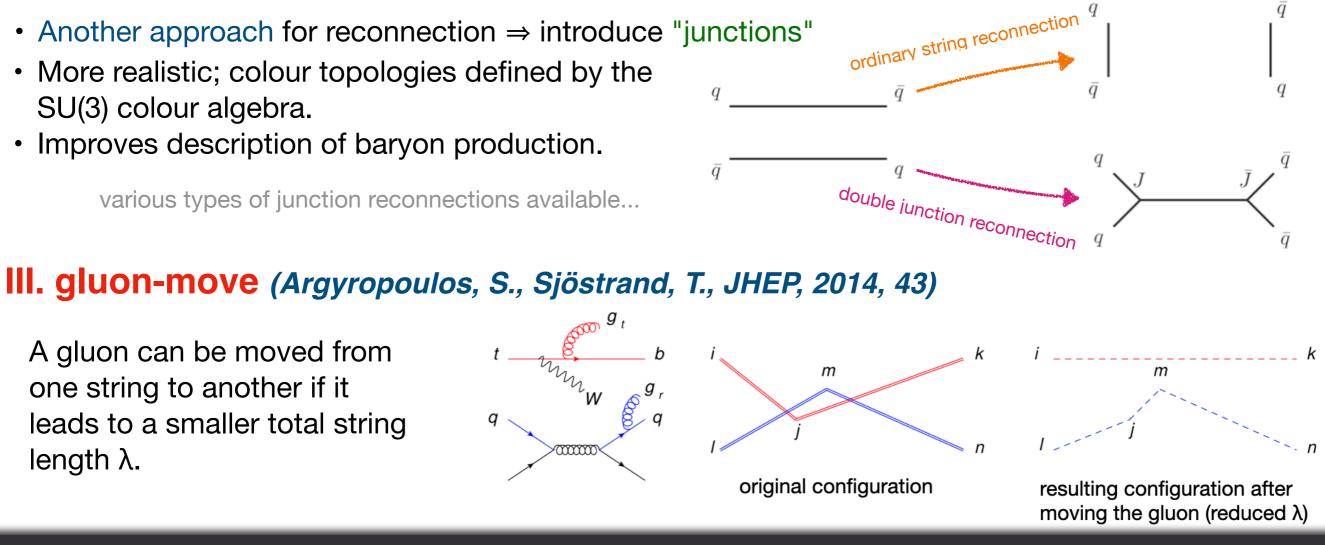
Typical hadronization scale is around 1 fm \rightarrow But top quark travels ~0.2 fm before it decays.

In PYTHIA8 (Early Resonance Decay (ERD))

- ERD = off: top quark can colour reconnect to other partons.
- ERD = on: the decay products of the top quark can colour reconnect to other partons.

CR models in PYTHIA8

I. MPI-based (G. Gustafson, Acta Phys. Polon. B40, 1981 (2009))


Reconnection probability (single tunable parameter)

$$P_{\rm rec}(p_{\rm T}) = \frac{(R_{\rm rec} \cdot p_{\rm T0})^2}{R_{\rm rec} \cdot p{\rm T0} + p_{\rm T}^2}$$

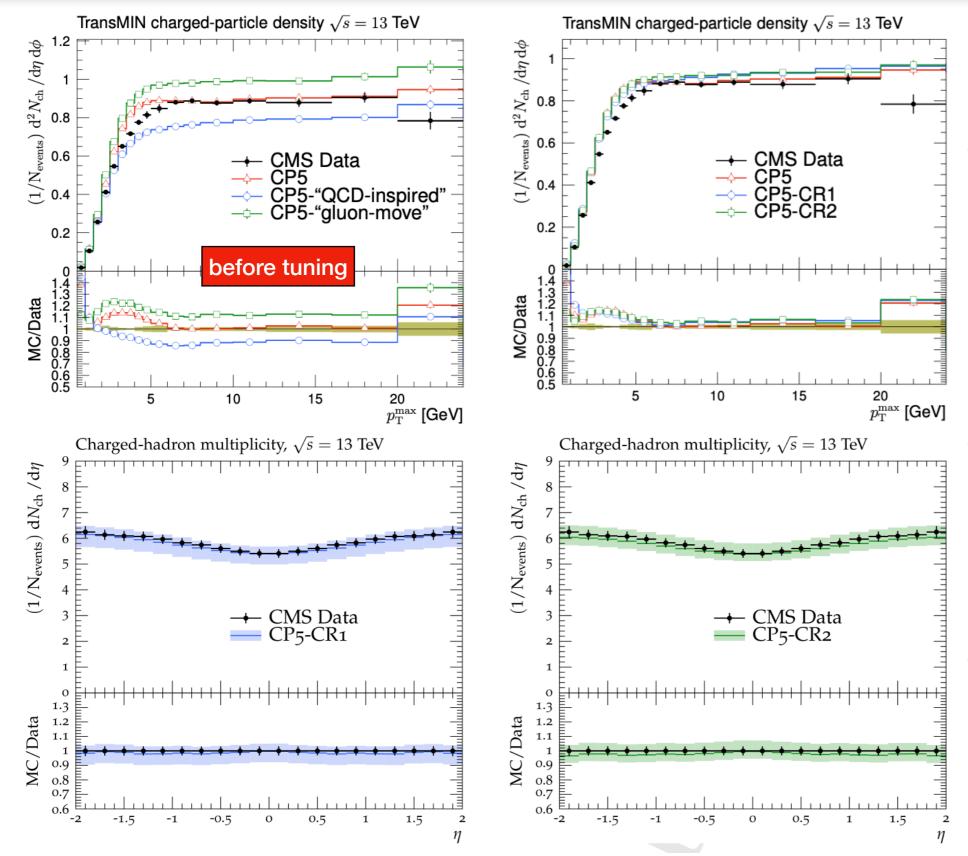
Reduce λ by adding partons of the lower-pT system to the strings defined by the higher-pT system.

 $p_{T\downarrow} \Rightarrow P_{rec\uparrow}$ softer systems easier to reconnect

II. QCD-inspired (Christiansen, J.R., Skands, P.Z. JHEP, 2015, 3)

Sercan Sen

12/16


HSF Event Generator Tuning Workshop

CP5-CR tunes settings

Replace the MPI-based CR model used in the CP5 with the QCD-inspired (CR1) and gluonmove (CR2) models, respectively, and tune the MPI + CR parameters.

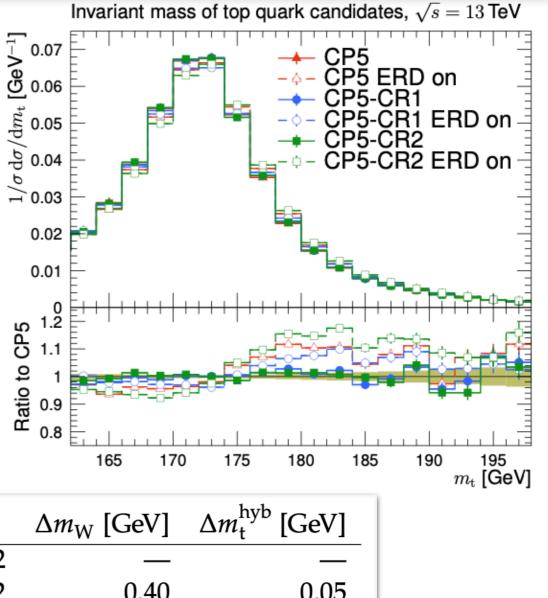
PYTHIA 8 parameter	CP5 [10]	CP5-CR1	CP5-CR2
PDF set	NNPDF3.1 NNLO	NNPDF3.1 NNLO	NNPDF3.1 NNLC
$\alpha_{\rm S}(m_Z)$	0.118	0.118	0.118
SpaceShower:rapidityOrder	on	on	on
MultipartonInteractions:ecmRef[GeV]	7000	7000	7000
$\alpha_{\rm S}^{\rm ISR}(m_{\rm Z})$ value/order	0.118/NLO	0.118/NLO	0.118/NLO
$\alpha_{\rm S}^{\rm FSR}(m_{\rm Z})$ value/order	0.118/NLO	0.118/NLO	0.118/NLO
$\alpha_{\rm S}^{\rm MPI}(m_{\rm Z})$ value/order	0.118/NLO	0.118/NLO	0.118/NLO
$\alpha_{\rm S}^{\rm ME}(m_{\rm Z})$ value/order	0.118/NLO	0.118/NLO	0.118/NLO
StringZ:aLund	_	0.38	_
StringZ:bLund	_	0.64	_
StringFlav:probQQtoQ	_	0.078	_
StringFlav:probStoUD	—	0.2	—
SigmaTotal:zeroAXB	off	off	off
BeamRemnants:remnantMode	—	1	—
ColourReconnection:mode	_	1	2
MultipartonInteractions:pT0Ref[GeV]	1.410	1.375	1.454
MultipartonInteractions:ecmPow	0.033	0.033	0.054
MultipartonInteractions:coreRadius	0.763	0.605	0.649
MultipartonInteractions:coreFraction	0.630	0.445	0.489
ColourReconnection:range	5.176	—	—
ColourReconnection:junctionCorrection	—	0.238	—
ColourReconnection:timeDilationPar	_	8.580	—
ColourReconnection:m0	—	1.721	—
ColourReconnection:m2lambda	_	_	4.917
ColourReconnection:fracGluon	—	—	0.993
N _{dof}	183	157	158
$\chi^{*2}/N_{ m dof}$	1.04	2.37	0.89

CP5-CR tunes results

 Good description of plateau by all tunes.
 Low p_T part highly sensitive to diffractive contributions. Below
 ≈2-3 GeV is not included in the fits.

- New tunes perform better compared to tunes using default parameters of the new CR models.
- Tune uncertainties provided.

Top quark mass predicted by CP5-CR tunes


Most precise measurement by CMS experiment combining the data at 7 and 8 TeV:

 $m_{\rm t} = 172.44 \pm 0.13 \,(\text{stat+JSF}) \pm 0.47 \,(\text{syst}) \,\text{GeV},$

 Top/W mass values obtained by fitting a Gaussian function within an 8 GeV mass window around the corresponding mass peak.

$$\Delta m_{\rm t}^{\rm hyb} = \Delta m_{\rm t} - 0.5 \Delta m_{\rm W}$$

Used in CMS-TOP-17-007 to estimate uncertainty on m_{top}

	Tune	<i>m</i> _t [GeV]	$\Delta m_{\rm t}$ [GeV]	$m_{\rm W}$ [GeV]	$\Delta m_{\rm W}$ [GeV]	$\Delta m_{\rm t}^{\rm nyb}$ [GeV]	
	CP5	171.93 ± 0.02		79.76 ± 0.02			
	CP5 ERD	172.18 ± 0.03	0.25	80.15 ± 0.02	0.40	0.05	
	CP5-CR1	171.97 ± 0.02	0.04	79.74 ± 0.02	-0.02	0.05	
	CP5-CR1 ERD	172.01 ± 0.03	0.08	$\textbf{79.98} \pm \textbf{0.02}$	0.23	-0.04	
	CP5-CR2	171.91 ± 0.02	-0.02	79.85 ± 0.02	0.10	-0.07	largest
	CP5-CR2 ERD	172.32 ± 0.03	0.39	$\textbf{79.90} \pm \textbf{0.02}$	0.14	0.02	deviation from
L,							the predictions

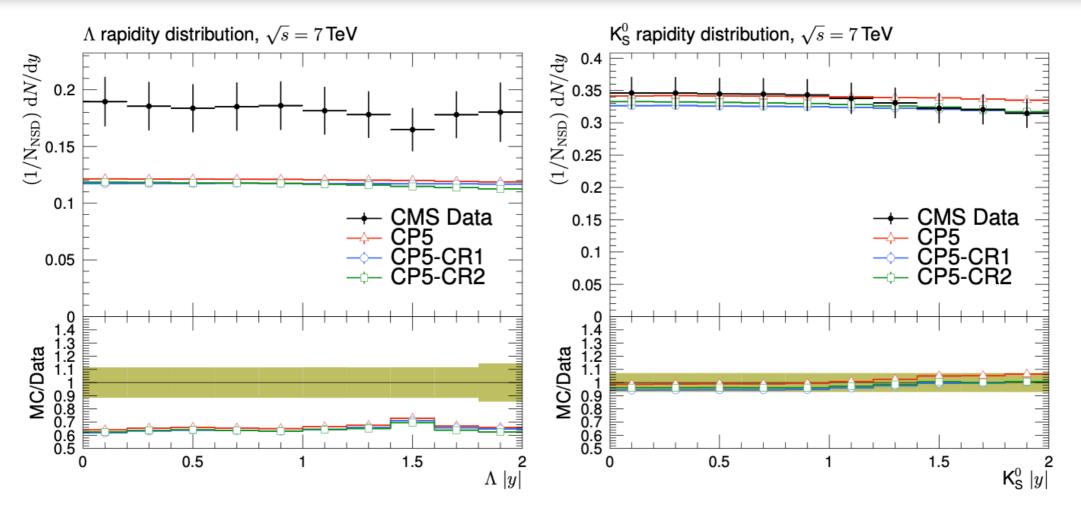
9.32 GeV is similar to the shift (0.31 GeV) found in CMS-TOP-17-007 using CUETP8M2T4.
CP5 does not improve or degrade the precision of the top quark mass measurements.

of CP5

Summary

- CMS has developed tunes for PYTHIA8, Herwig7, PYTHIA6, and Herwig++.
- Tunes validated in various final states and center-of-mass energies.
- Validation includes LEP event shape observables, multijet events, top quark pairs, W/Z production, double-parton scattering, forward observables, and more.
- Dedicated working group: PCGT (Physics Comparisons and Generator Tunes).
- TMG (Top Modeling and Generators) group also derives and tests tunes.
- Tools used: Rivet, Professor, MCPLOTSCMS.
- Recently employed tools: MCNTUNES, and Apprentice.

Backup

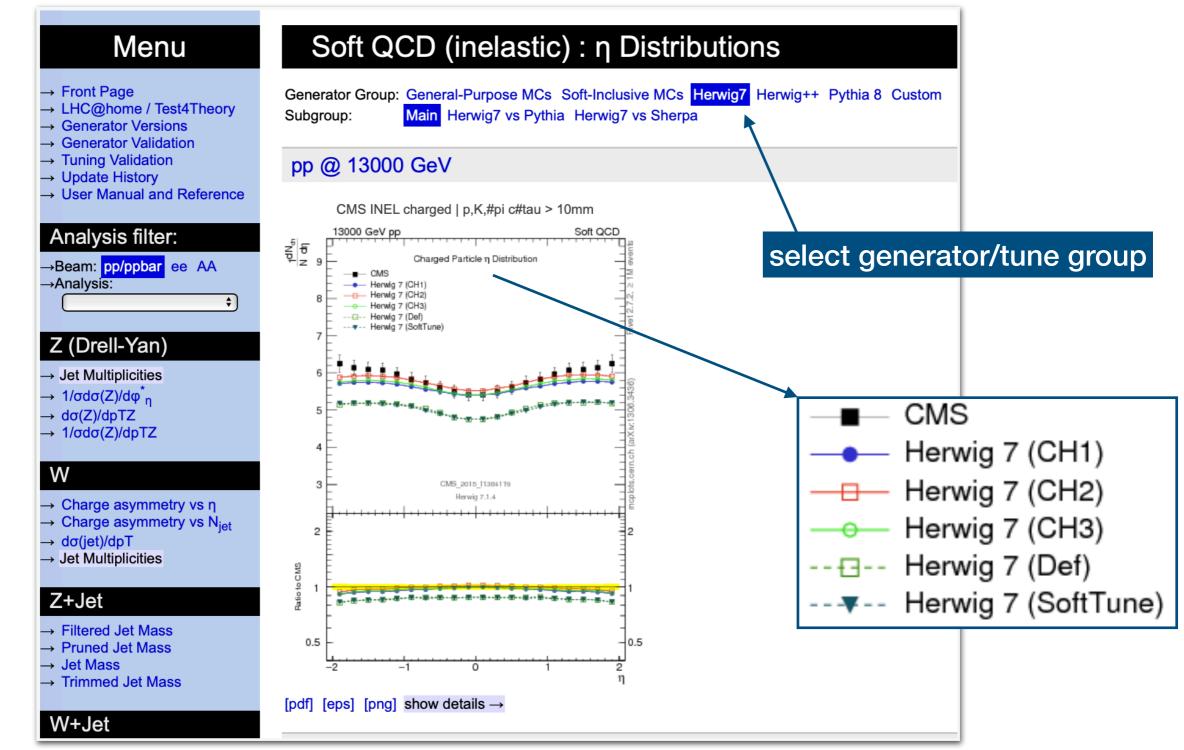

CUETP8M2T4 based CR tunes

Parameters	CUETP8M2T4	QCD inspired	gluon move
MultipartonInteractions:pT0Ref	2.20	2.17	2.30
MultipartonInteractions:expPow	1.60	1.31	1.35
MultipartonInteractions:ecmRef	7000	7000*	7000*
MultipartonInteractions:ecmPow	0.25	0.25*	0.25*
ColourReconnection:range	6.59	-	-
ColourReconnection:junctionCorrection	-	0.12 (1.20)	-
ColourReconnection:timeDilationPar	-	15.9 (0.18)	-
ColourReconnection:m0	-	1.2 (0.3)	-
ColourReconnection:m2lambda	-	-	1.9 (1.0)
ColourReconnection:fracGluon	-	-	1.0* (1.0)
ColourReconnection:dLambdaCut	-	-	0.0* (0.0)
PDF set	NNPDF30_LO [JHEP 04 (2015)]	NNPDF30_LO	NNPDF30_LO
SpaceShower:alphaSvalue	0.1108^{*}	0.1108^{*}	0.1108^{*}
Goodness of fit/dof	1.89 [CMS-PAS-TOP-16-021]	1.06	1.69
* = V	alue kept fixed in the fit		

- A study based on early UE tune of Run 2. Tunes have been used used in Ref.[1] to calculate the uncertainty on top mass due to the CR modeling.
- NNPDF3.0 LO PDF set.
- A simpler impact parameter profile for the incoming hadron beams is used, i.e., double Gaussion matter is not used.
- In gluon-move model, only m2Lambda parameter was tuned.

[1] CMS Collaboration, "Measurement of the top quark mass with lepton+jets final states using pp collisions at s = 13 TeV", *Eur. Phys. J. C* **78** (2018) 891.

Tune Performances: Strange particle productions (7 TeV)


• It is known that the LHC UE tunes do not perfectly describe strange particle production.

- Shown in "Christiansen, J.R., Skands, P.Z. JHEP, 2015, 3" that new QCD-based CR model improves Λ/K⁰_S versus rapidity production in pp collisions. The study is based on Monash tune with a different PDF set, alphas and MPI values from CP5. (Monash: NNPDF2.3 LO PDF set). Also, data at 13 TeV was not included in the tuning.
- After our tuning to existing data:
 - All CP5 tunes, regardless of the CR model, describe K_s^0 versus rapidity very well.
 - Λ versus rapidity is underestimated by 30%. Therefore, Λ/K_s^0 is not perfectly described.

MCPLOTSCMS

CMS version of http://mcplots.cern.ch/

Used for tuning and validation: particularly for tuning and validation of CP5-CR tunes and for the validation of CH tunes.

