HSF Event Generator Tuning Workshop 27th June 2023

ALICE overview and ideas for event generators tuning

Valentina Zaccolo on behalf of ALICE

University and INFN – Trieste

Monte Carlo event generators tuning is *usually* needed for accurate

Why do Collaborations need tuning?

- 1. **discoveries** prediction-to-data differences bring to a discovery
- 2. corrections precisely tuned simulations help in correcting for efficiency/acceptance/background effects in data

Monte Carlo event generators tuning is *usually* needed for accurate

Why do Collaborations need tuning?

- 1. **discoveries** prediction-to-data differences bring to a discovery
- 2. corrections precisely tuned simulations help in correcting for efficiency/acceptance/background effects in data

ALICE

Almost exclusively for this purpose in ALICE

When can a simulation be precise?

Precision: "the quality of being exact, accurate and careful" – Oxford dictionary

Perturbative QCD processes are the only ones that are calculable exactly and accurately.

In ALICE this means

- 1. jets
- 2. heavy-flavour processes

Predictions bring to discoveries

QCD dead-cone effect (*):

- not a strict example of tuning, but and example of when precise predictions
 - with specific settings drive to discovery

Core of ALICE physics programme

The ALICE Collaboration has built a detector optimised to study the **collisions of** nuclei at the ultra-relativistic energies provided by the LHC.

Nuclei simulations are implemented in some Monte Carlo generators – non exhaustive list:

Model	Implementation in AA	Available tunes
DPMJet	QGP	x
EPOS	QGP at high density	general tune of EPOS1.99 to LHC data
HIJING	QGP	x
JETSCAPE	QGP in AA	pp tune
Pythia/Angantyr	No QGP	several pp tunes
27/06/23	Valentina Zaccolo - HSF Workshop	5

Core of ALICE physics programme

The ALICE Collaboration has built a detector optimised to study the **collisions of nuclei** at the ultra-relativistic energies provided by the LHC.

Nuclei simulations are implemented in some Monte Carlo generators – non exhaustive list:

Model	Implementation in AA	Available tunes
DPMJet	QGP	x
EPOS: tune to AA data Only one available for AA	QGP at high density	general tune of EPOS1.99 to LHC data
HIJING	QGP	x
JETSCAPE	QGP in AA	pp tune
Pythia/Angantyr	No QGP	several pp tunes
07/00/00	Valentine Zeccole LICE Workshop	F

ALICE

Why tuning is *almost* absent in AA?

The reason lies on the fact that precise calculation are not possible:

1. excess of degrees of freedom

- 2. soft QCD processes rely on phenomenology, such as, e.g.:
 - o soft diffraction
 - o beam remnants
 - \circ hadronisation

pp: focus on hadronisation

Pythia example: there is no tuning that can help!

Valentina Zaccolo - HSF Workshop

pp: focus on hadronisation

Tuning can be performed *if necessary* when a model can get basic features (*)

(*) e.g. see N. Fischer and T. Sjöstrand, JHEP 01 (2017) 140

27/06/23

pp: focus on hadronisation

Same considerations apply to strangeness: new modelling to enhance string tension

ALICE

9

Outlook

No ALICE tune available for any of the generators presented, but...

Plans to work on a strangeness tune of Pythia Ropes using ALICE data

- will allow *primarily* to increase the precision and usability of MC simulations to correct for efficiency / acceptance / background effects with optimised computational resources
- will increase our understanding of the consequences of single parameter variations in phenomenological models