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The ESS Machine

Control System

1.6 million process variables (design)

Protons
BEBDBRE—

Accelerator Target 1struments Data Centre
5 MW protons (design) 11 tonnes ruments (design)
2.8 ms pulses 23.3 rpm
14 Hz repetition rate Helium cooled

2.6 m diameter
42 neutron beam ports






ESS |s a user fac:z 1z‘y

Saenhstéfr@m aII over the-- -
world \/\ﬁbe welcomed to
~ ESS with their speCImens
‘ to do experlments i

Expectations: |

- 800 éXpériments per year

=3 000 guest SC|ent|sts per
year
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Challenges

= Accelerator — based facilities are some of
the worlds most complex systems

= ESS is a user facility with a 95%
availability goal

— High availability requirements on
equipment

— The control system plays a key role for the
availability of the facility

2023-09-26 Fast Machine Learning for Accelerator Controls 9




Control System Machine Learning Project @

2019 - 2023

= Explore if machine learning can be used
to:

= |ncrease facility availability.
= |ncrease efficiency of operation
» Enhance process understanding

= Lower operational and maintenance
costs

= Decrease commissioning time




Resources

* 100 % me
« Overwhelming interest from

» Colleagues
e Students
e Academia

« Companies




ESS Control System Data Lab

https://wasp-sweden.org/a-big-machine-with-lots-of-data-wasp-researchers-in-a-pilot-study-with-ess/
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€ NEWS

A big machine with lots of data - WASP
researchers in a pilot study with ESS
April 28th, 2021

Image: Perry Nordeng/ESS

When finished, the European Spallation Source (ESS) in Lund will have the most complex
control system in Sweden, and Al, especially machine learning, is crucial for optimizing
its operation. WASP associated researchers Per Runeson and Emma Séderberg, both
from Lund University, recently contributed to a pilot study on data sharing for machine
learning research from ESS.

In their contribution, they have investigated several issues regarding data sharing. How
can data be shared between organizations in order to achieve more and better training
data for machine learning models? One useful solution is sharing through data
ecosystems with various degrees of openness, where one company shares data, and
another annotates it. This could be beneficial in terms of increased knowledge and
better prediction models.

“We conclude in our report that by sharing data, ESS can function as a catalyst for
Industry 4.0 digitalisation, both in industry and other research facilities,” explains Per
Runeson, Professor in Software Engineering. “Data sharing fulfills the function of sharing
knowledge, and our project shows that it is possible for ESS to be a role model and
share relevant data with industry,” he adds.

Another topic addressed was how to build long-term reliable data pipelines. They found
that agile tools and approaches are needed in order to collect, process and maintain
data. Also, data traceability and handling of meta data are important quality factors that
needs attention when working with machine learning.

“We found that a lot of the literature cover challenges with Big Data, but in practice for
companies in this space the data sets may many times be smaller and there are
challenges in how to trace data versions and how to share understanding of the data
between developers. We see a potential in further exploring how agile methods and
tools from software development can be utilized in management of data,” says Emma
Séderberg.

(ess


https://wasp-sweden.org/a-big-machine-with-lots-of-data-wasp-researchers-in-a-pilot-study-with-ess/

Klystron oil temperature

https://www.dvel.se/news/new-collaboration-with-ess-within-vinova-project-regarding-machine-learning-and-ai/

‘‘‘‘

temperature

time
Use case:
= Warn before temperatures gets too high.
= Warn about fault sensors or calibration issues.
= Apply feedback loop to keep the temperature
within limit.




Student Project: Tuning the DTL

Developing an ML-based model for RF tuning of DTL machine at ESS

Student: Amin Hosseini Nejad.
Institute: Automatic Controls LU

Course: Master's Program in Machine
Learning, Systems and Control

ESS Supervisor: Natalia Milas (accelerator
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Student project: Alarms

Causal event processes and alarm analysis at ESS

= Student: Vishnu Pradheep Raveendran

= Department: Automatic controls, Lund
University.

» Degree: MsC in Machine Learning,
Systems and Control




Student project: Anomaly detection @

https://gupea.ub.gu.se/handle/2077/78206

Student: Vernita Gouws

Title: A Software Process Workflow for
Smart Anomaly Detection Systems

Degree: BSc Software Engineering and
Management

ESS Supervisor: Target division

University: Chalmers and Goteborg University




Data

Machine learning models can never perform better than the data they were
trained on.

= Reduce volume of data to mitigate network problems, reduce time to retrieve
data, reduce costs to store data and reduce costs to pre-process data.

= Enhance information in control system data: Set alarm limits, description, units,
operational limits, dead bands, calibration parameters...

= Develop data model and control system data protocol to minimize need of
complicated interfaces.

= Make control system data easier to understand for non-experts in control
systems (compare with data model in e.g. Numpy, Pandas, Tensorflow, Pytorch,
Spark)

o



More metadata and less data
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