&
Graph Neural Networks on™~

FPGAs with his4ml

Vladimir Loncar, Jan Schulte, Mia Liu, Phil Harris

{<INSF' " Fast Machine “Sllilag 18 SElEED el Ene g %3
| September 25-28 2023

OAC-2117997 https://indico.cern.ch/event/1283970/ https://a3d3.ai/

https://www.nsf.gov/awardsearch/showAward?AWD_ID=2117997
https://a3d3.ai/

Introduction

e Graphs are often a natural representation of data (nodes) and their relation to each
other (edges)

o In particle or nuclear physics collider experiments, hits in charged particle tracking detectors can be
represented as the nodes in a graph
o Allows for single particle (e.g. particle trajectory) or event level (e.g. rare T—3u decays) inference
using Graph Neural Networks (GNNs)
e Use of GNNs in systems with strict latency constraints (e.g trigger systems of sPhenix or CMS)
requires FPGA implementations
e Support for GNNs in tools like hls4ml is therefore desirable
e Missing pieces so far:
o GNNs usually implemented in pytorch/pytorch geometric (PyG), only limited pytorch support
in hls4ml
o Missing support for several typical operations in GNNs, such as scatter_*
e Presented today is a prototype for conversion and HLS code generation of a PyG GNN model in
his4ml

https://pytorch.org/
https://pytorch-geometric.readthedocs.io/en/latest/

Improved pytorch support °

e First step to support PyG model:
Improve general pytorch support in
his4ml

e Pytorch models are defined as classes
inheriting from a “Module” class.
Operations in the model are defined in

the “forward” function
o Can be pytorch classes and function, but
also general python operations such as
“getitem” and “getattr”

self.
self.
self.
self.
self.

fo
B
X
X
X
X

i n n n n =

\ orm, self).__init__ ()

conv1 nn /2d(in_channels=1, out_channels=10,
kernel_size=5,
stride=1)

conv2 = nn.Conv2d(10, 20, kernel_size=5)

conv2_bn = lorm2d(20)

densel = nn.l r tures=320, out_features=50)

densel_bn = I

dense2 = nn.L

ward(self, x):

a
=
=
X.
=
=

.relu(F.max_pool2d(self.convi(x), 2))
.relu(F.max_pool2d(self.conv2_bn(self.conv2(x)), 2))
view(-1, 320)

.relu(self.densel_bn(self.densel1(x)))
.relu(self.dense2(x))

rn F.softmax(x)

e torch.FX package allows for symbolic tracing to capture all model operations
e Rewrote pytorch converter in his4ml; supports a large set of NN layers

o Included in master branch, will enter v0.8

o RNN support exists in limited form in a separate branch, to be included

o Started to work on supporting brevitas models

https://pytorch.org/docs/stable/fx.html

e —

s —
GNN support in his4ml SpHE@ ""4&‘
S

Parsing of GNN models in PyG can use largely the same conveﬂ3.’
e Extended operations supported in his4ml based on what was needed to

implement a GNN developed for track reconstruction in the sPhenix trigger

o scatter * operations, such as scatter _add
o Python operations such as “getitem”
o ‘“gather” operations and operations such as “ones()” and “zeros()”

e For more general GNN support, need to also add support for PyG

MessagePassing layers
e Successfully converted and synthesized the sPhenix tracking GNN for the
first time last week

o Large model, had to be broken up into pieces
o scatter_* implementation not optimized, large resources usage

https://bitbucket.org/dtyu/trigger-detection-pipeline/src/main/sPHENIX/tracking-GNN/models/agnn_inference.py
https://pytorch-geometric.readthedocs.io/en/latest/tutorial/create_gnn.html

sPHENIX tracking GNN his4ml synthesis results

- Network inputs: nodes=80, edges=100 Extremely preliminary - DO NOT
- Input network TRUST NUMBERS

- Can be parallelized to be “nodes” times faster (i.e., 15ns)

Latency BRAMs DSPs FFs LUTs

1.2 us 6.5% 0.3% 5% 7.5%

- Edge network

Latency BRAMs DSPs FFs LUTs

3us 15% 2% 20% 65%

- Node network (results from HLS synthesis, vivado synthesis OOM'd)
- Neet to optimize the scatter_add function (expecting ~2us for the net)

Latency BRAMs DSPs FFs LUTs

12 us 42% 7%

Repeat n_graph_diters times

)

)

Input network J

L

.

Edge network

l

Ve

Node network

I

)

Edge network]

Q,_

Outlook

e GNN implementation in his4dml in prototype stage
o Currently we know we support one specific model, sort of
o Significant optimization still necessary

e Need to study how much this can be generalized to other use cases

e Different GNN models using different PyG classes will likely need some
adaptation of the converter, possibly also additional HLS code

e Can not all be provided centrally by us, but we are happy to assist users in
implementing their needed functionality

