
Graph Neural Networks on
FPGAs with hls4ml

Vladimir Loncar, Jan Schulte, Mia Liu, Phil Harris

Fast Machine Learning for Science workshop
September 25-28 2023

https://indico.cern.ch/event/1283970/OAC-2117997 https://a3d3.ai/
1

https://www.nsf.gov/awardsearch/showAward?AWD_ID=2117997
https://a3d3.ai/

Introduction

● Graphs are often a natural representation of data (nodes) and their relation to each
other (edges)

○ In particle or nuclear physics collider experiments, hits in charged particle tracking detectors can be
represented as the nodes in a graph

○ Allows for single particle (e.g. particle trajectory) or event level (e.g. rare 𝛕→3μ decays) inference
using Graph Neural Networks (GNNs)

● Use of GNNs in systems with strict latency constraints (e.g trigger systems of sPhenix or CMS)
requires FPGA implementations

● Support for GNNs in tools like hls4ml is therefore desirable
● Missing pieces so far:

○ GNNs usually implemented in pytorch/pytorch geometric (PyG), only limited pytorch support
in hls4ml

○ Missing support for several typical operations in GNNs, such as scatter_*
● Presented today is a prototype for conversion and HLS code generation of a PyG GNN model in

hls4ml

2

https://pytorch.org/
https://pytorch-geometric.readthedocs.io/en/latest/

Improved pytorch support
● First step to support PyG model:

Improve general pytorch support in
hls4ml

● Pytorch models are defined as classes
inheriting from a “Module” class.
Operations in the model are defined in
the “forward” function

○ Can be pytorch classes and function, but
also general python operations such as
“getitem” and “getattr”

3

● torch.FX package allows for symbolic tracing to capture all model operations
● Rewrote pytorch converter in hls4ml; supports a large set of NN layers

○ Included in master branch, will enter v0.8
○ RNN support exists in limited form in a separate branch, to be included
○ Started to work on supporting brevitas models

https://pytorch.org/docs/stable/fx.html

GNN support in hls4ml

● Parsing of GNN models in PyG can use largely the same converter
● Extended operations supported in hls4ml based on what was needed to

implement a GNN developed for track reconstruction in the sPhenix trigger
○ scatter_* operations, such as scatter_add
○ Python operations such as “getitem”
○ “gather” operations and operations such as “ones()” and “zeros()”

● For more general GNN support, need to also add support for PyG
MessagePassing layers

● Successfully converted and synthesized the sPhenix tracking GNN for the
first time last week

○ Large model, had to be broken up into pieces
○ scatter_* implementation not optimized, large resources usage

4

https://bitbucket.org/dtyu/trigger-detection-pipeline/src/main/sPHENIX/tracking-GNN/models/agnn_inference.py
https://pytorch-geometric.readthedocs.io/en/latest/tutorial/create_gnn.html

sPHENIX tracking GNN hls4ml synthesis results

- Network inputs: nodes=80, edges=100
- Input network

- Can be parallelized to be “nodes” times faster (i.e., 15ns)

- Edge network

- Node network (results from HLS synthesis, vivado synthesis OOM’d)
- Neet to optimize the scatter_add function (expecting ~2us for the net)

Input network

Edge network

Node network

Edge network

R
ep

ea
t n
_g
ra

ph
_i
te

rs
 ti

m
esLatency BRAMs DSPs FFs LUTs

1.2 us 6.5% 0.3% 5% 7.5%

Latency BRAMs DSPs FFs LUTs

3 us 15% 2% 20% 65%

Latency BRAMs DSPs FFs LUTs

12 us 42% 7% - -

Extremely preliminary - DO NOT
TRUST NUMBERS

Outlook

● GNN implementation in hls4ml in prototype stage
○ Currently we know we support one specific model, sort of
○ Significant optimization still necessary

● Need to study how much this can be generalized to other use cases
● Different GNN models using different PyG classes will likely need some

adaptation of the converter, possibly also additional HLS code
● Can not all be provided centrally by us, but we are happy to assist users in

implementing their needed functionality

6

