Optimizing Sparse Neural Architectures for Low-Latency Anomaly Detection

Luke McDermott^{1,2}, Jason Weitz¹, Javier Duarte¹, Nhan Tran³ 1. UC San Diego, 2. Modern Intelligence, 3. Fermilab

Anomaly Detection at the LHC at 40 MHz

- Anomaly detection to search for new physics is an essential task
- To run AD in the first level of data selection requires algorithms with sub-microsecond latencies running on FPGAs
- Motivates studying how to optimally compress and discover sparse neural architectures
- Study using JetNet dataset [1] with q/g jets as background and t/W/Z jets as anomalies

[1] https://zenodo.org/record/6975118

Anomaly Detectors

Anomaly Detectors

Anomaly Detectors

Autoencoders with Reconstruction Loss in General

Reconstruction

Goal #1: Compress latent representation by modeling input distribution & removing noise

Goal #2: Generalize to out-of-distribution data

Reconstruction Loss = MSE(Input, Reconstruction)

Reconstruction-Based Anomaly Detection

Goal #1: Compress latent representation by modeling input distribution & removing noise

Goal #2: Generalize to out-of-distribution data

Low Reconstruction Loss = Background High Reconstruction Loss = Anomaly

Reconstruction-Based Anomaly Detection

Goal #1: Compress latent representation by modeling input distribution & removing noise

Low Reconstruction Loss = Background High Reconstruction Loss = Anomaly

Reconstruction-Based Anomaly Detection

Goal #1: Compress latent representation by modeling input distribution & removing noise

Low Reconstruction Loss = Background High Reconstruction Loss = Anomaly

Revised Goal #2: Only reconstruct in-distribution data

Global Architecture Search with Supernetworks

Search across dense architectures & train once (One-Shot NAS)

Supernet

... Batch Norm Leaky ReLU Big Linear

Optimal Dense Architecture

Local Architecture Search through Pruning

Remove unnecessary parameters for faster inference

Dense Architecture

Sparse Architecture

We employ Iterative Magnitude Pruning w/ Weight Rewinding

Our Framework

Optimal Architecture

Preliminary Results

Comparison to Complex Models on JetNet Dataset

Model	Top Quark AUC	W Boson AUC	Z Boson AUC
Sparse AE (ours)	0.9061	<u>0.7508</u>	<u>0.7852</u>
LG AE-Min-Max	0.8539	0.6938	0.7400
LG AE-Mix	0.8669	0.7489	0.7909
GNN AE-JL	0.8530	0.5937	0.6545
GNN AE-PL	0.8917	0.7558	0.7805
CNN AE	<u>0.8962</u>	0.6886	0.7700

Key: Best Model, Second Best Model

Takeaways & Future Work

- Benchmark across more difficult anomaly detection datasets
 - Simple statistical baselines perform well on past datasets
- Implement Quantization Aware Training in the Inner Loop of Neural Architecture Search
- Optimize for Mixed-Precision Quantization
- Implement Hardware-Aware NAS Frameworks for FGPA optimization
- Promote the use of AutoML in the FastML community