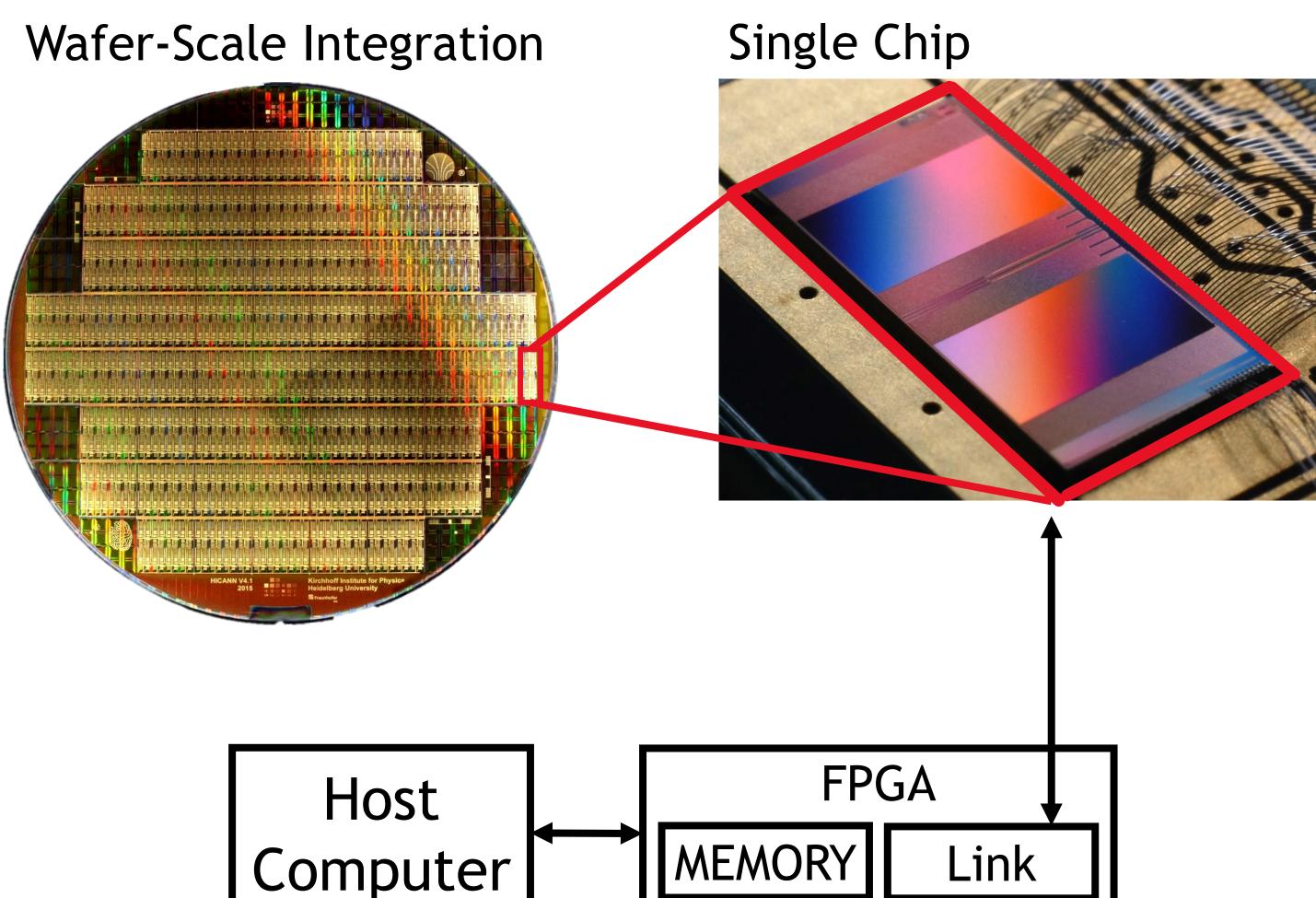
OPTIMIZING FOR IMPERFECTIONS IN ANALOG NEURAL COMPUTATIONS ON BRAINSCALES-2

Eric Kern, Hendrik Borras, Bernhard Klein, Holger Fröning

27. September 2023, FastML Workshop

BRAINSCALES-2

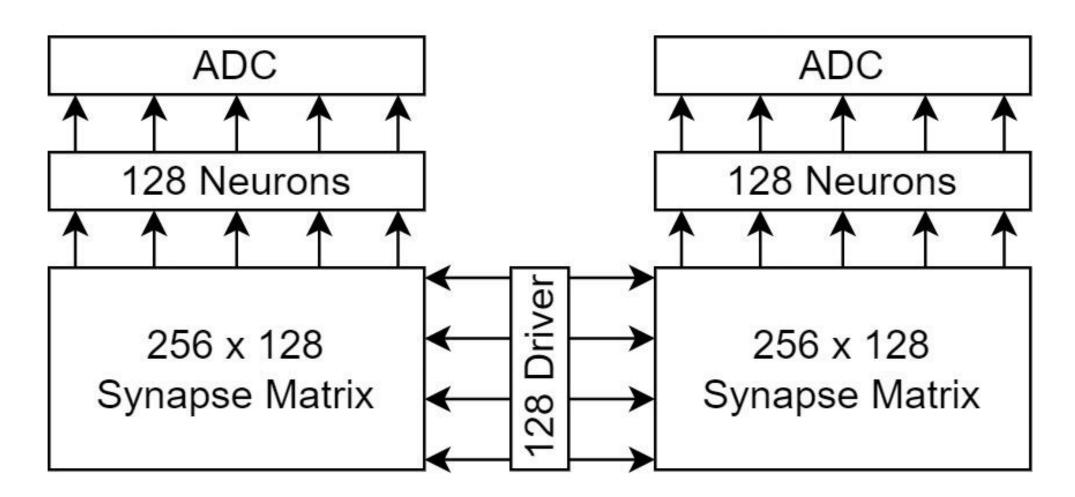
Purpose: **Energy Efficiency** Scalability Mixed Signal Chip: Digital I/O Analog Core Applications: Neuromorphic Computing Spiking Neural Networks **Artificial Neural Networks**

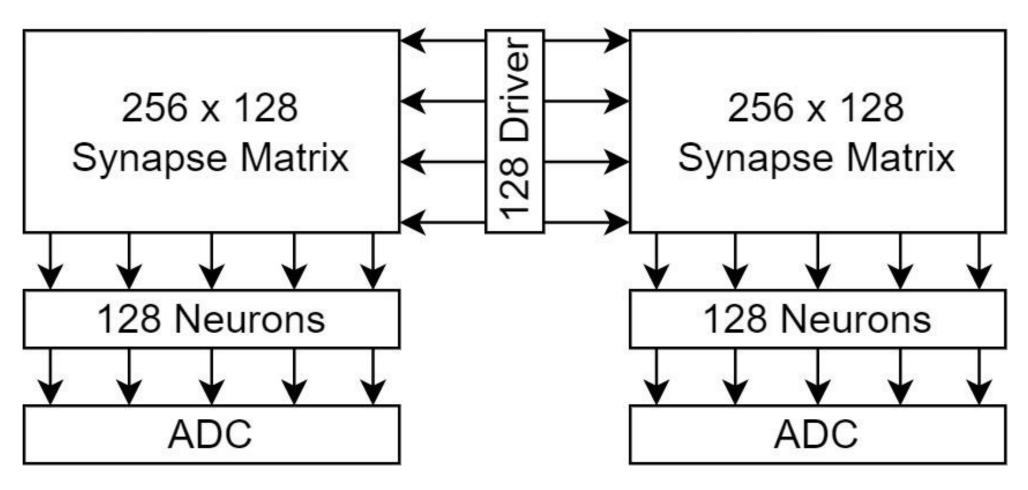


MATRIX MULTIPLICATION

$A \cdot W = C$

	\bigcap			 $w_{0,0}$	$w_{0,1}$	$w_{0,2}$
		\bigcap		 $w_{1,0}$	$w_{1,1}$	$w_{1,2}$
			\bigcap	 $w_{2,0}$	$w_{2,1}$	$w_{2,2}$
a	0	a_1	a_2	c_0	c_1	c_2

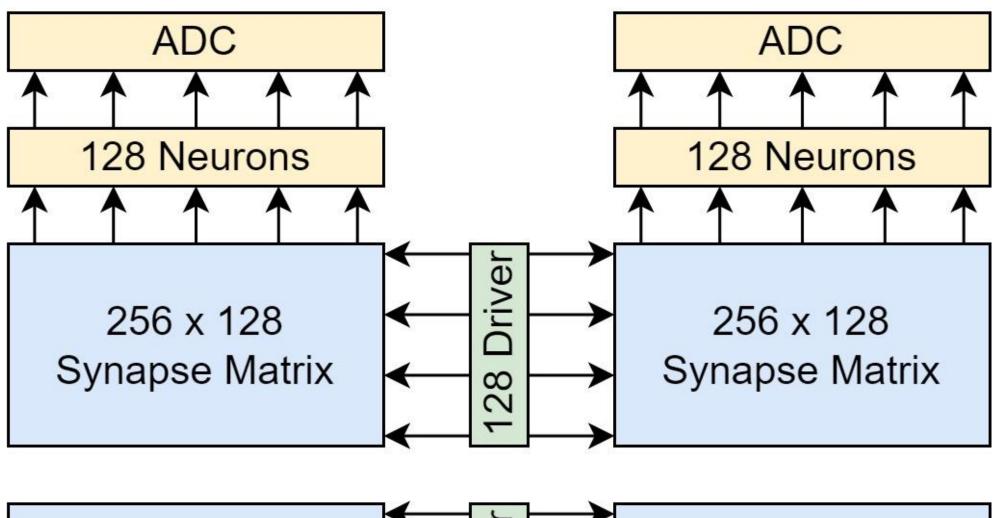


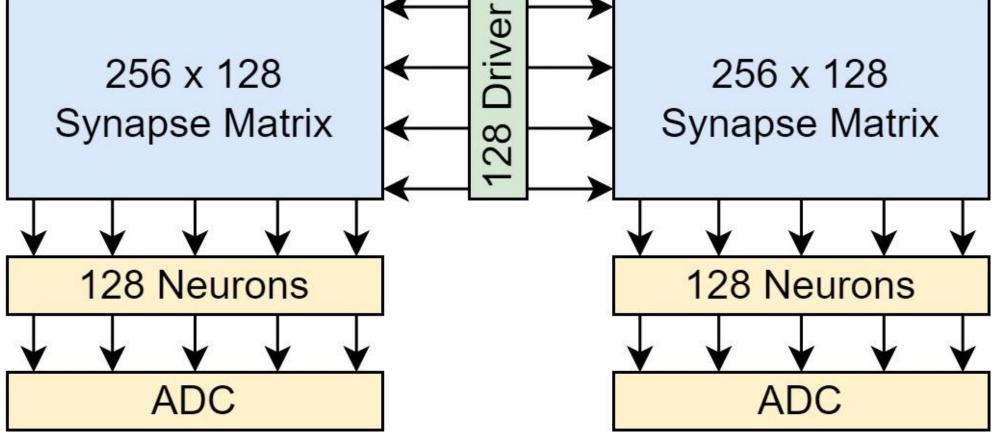


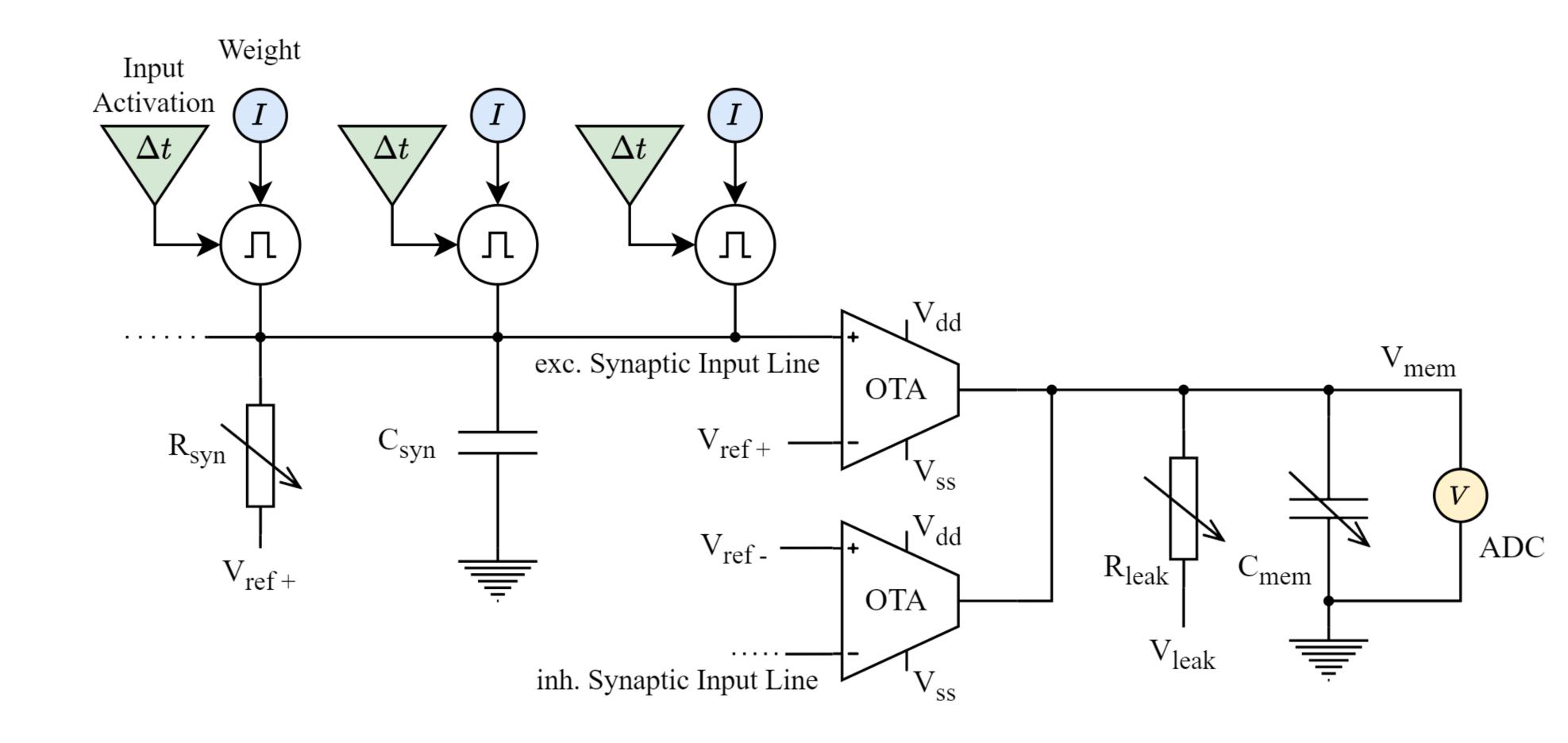
MATRIX MULTIPLICATION

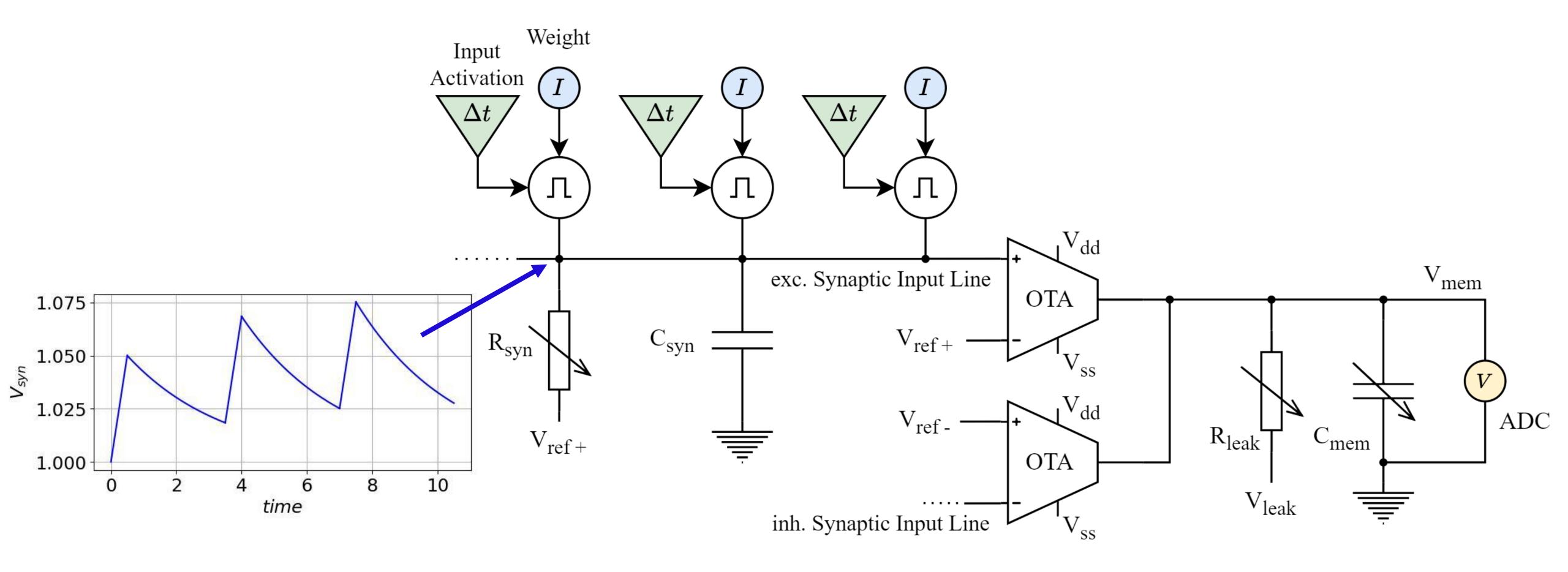
$A \cdot W = C$

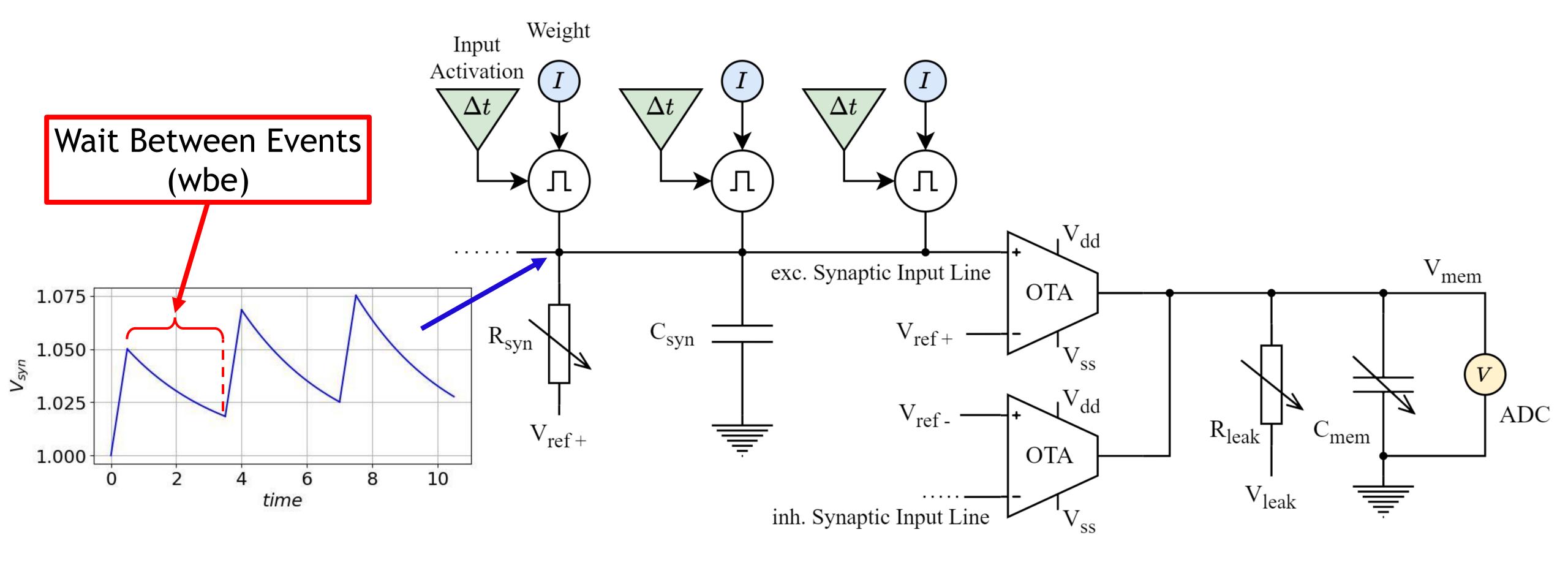
	\bigcap					$w_{0,0}$	$w_{0,1}$	$w_{0,2}$
			\bigcap			$w_{1,0}$	$w_{1,1}$	$w_{1,2}$
				\bigcap		$w_{2,0}$	$w_{2,1}$	$w_{2,2}$
		a			8 8			
a	0	a	1	a_2		c_0	c_1	c_2

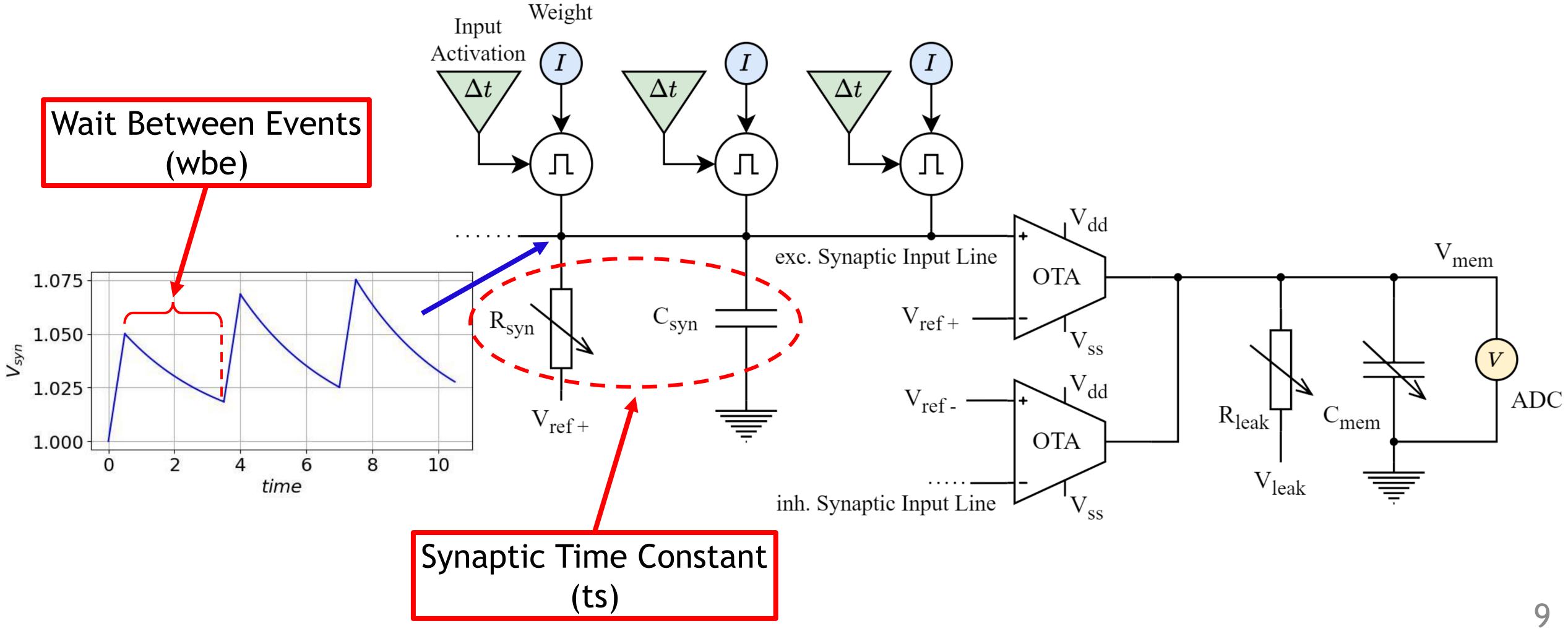


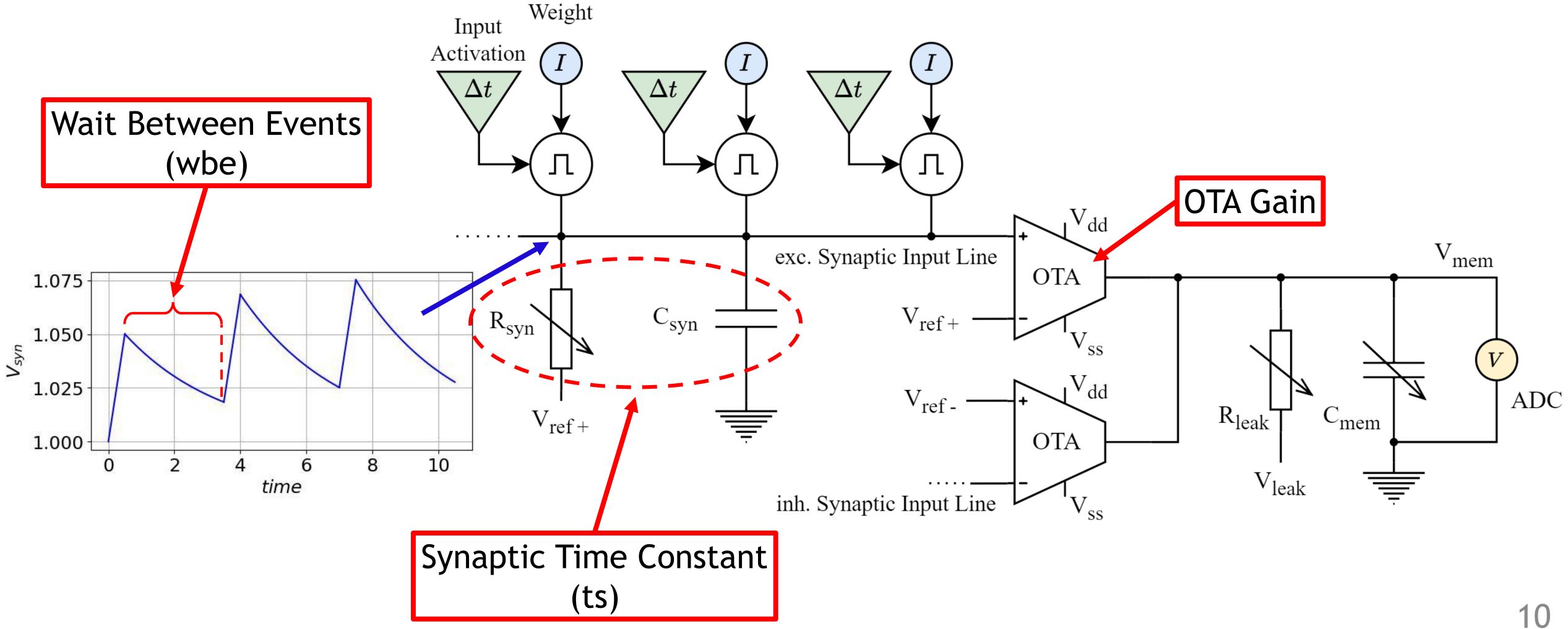


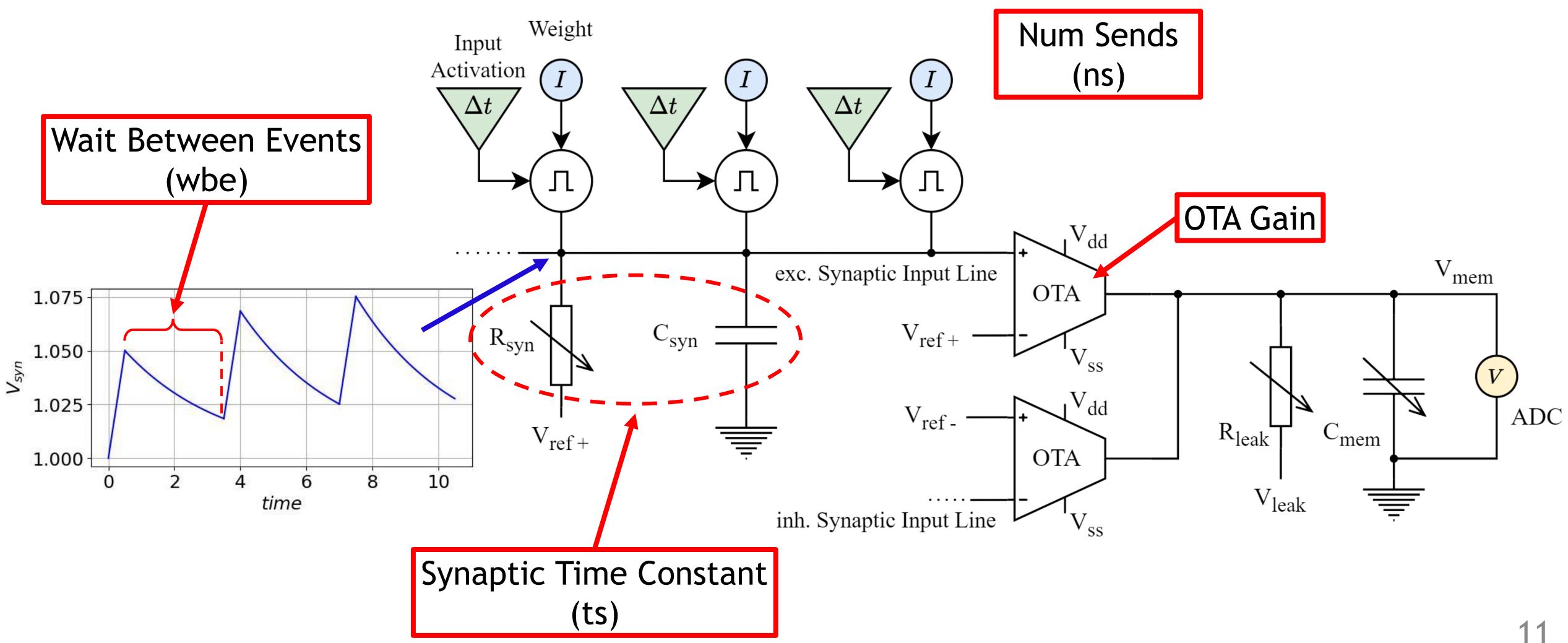






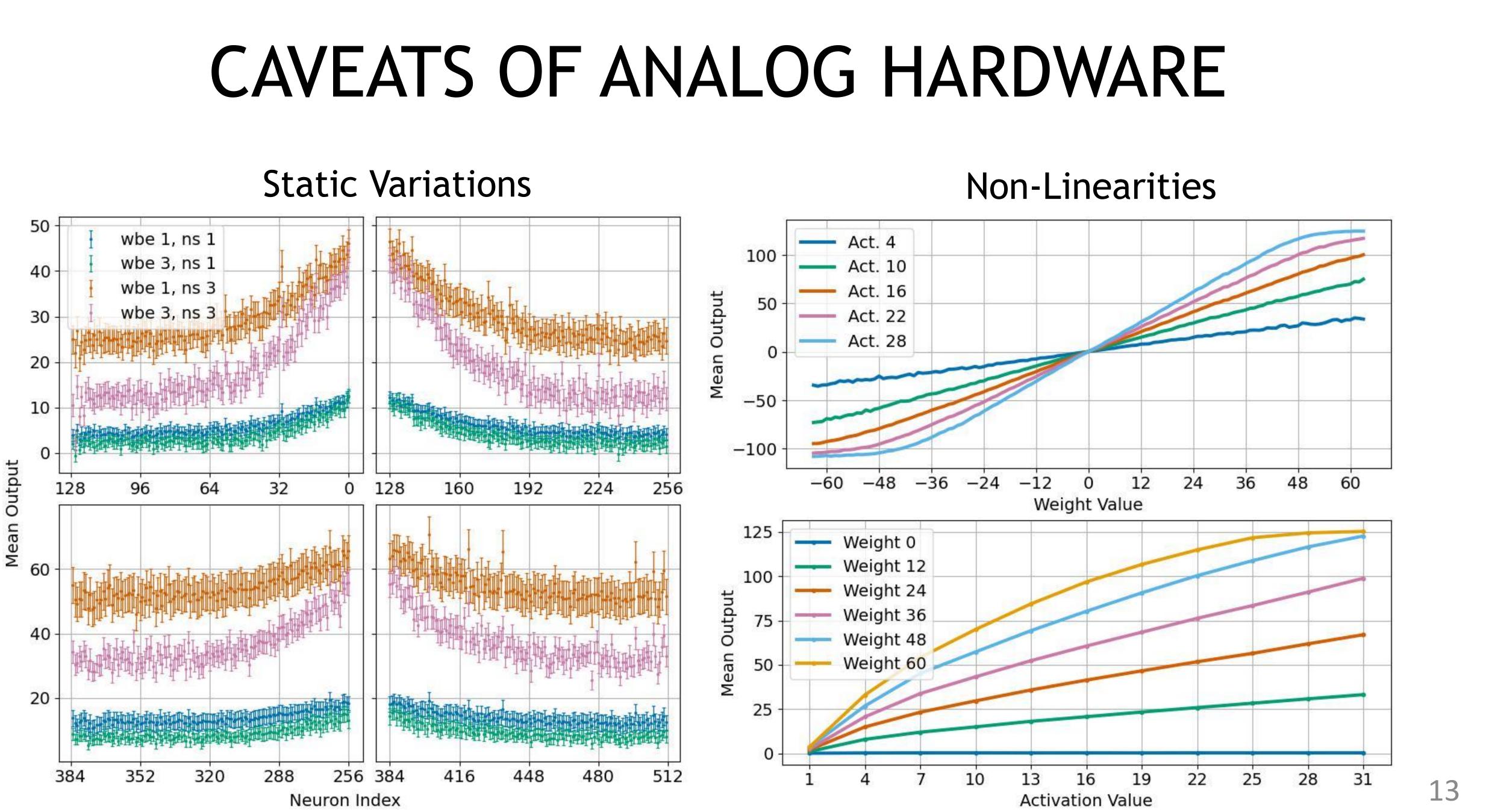






PROGRAMMING INTERFACE

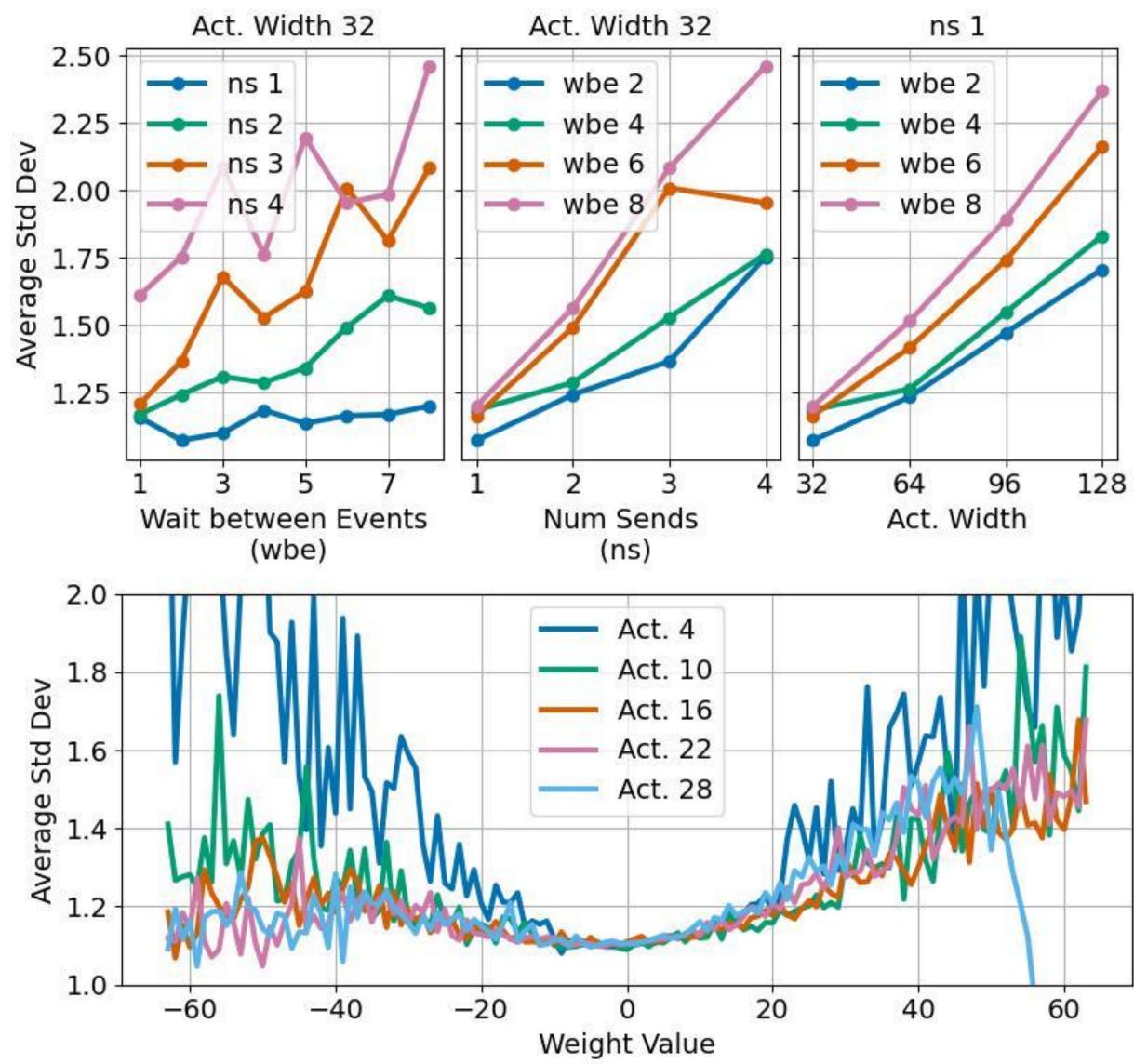
- Pytorch Extension "hxtorch"
 - Global chip initialization with static functions
 - hxtorch.init hardware(calib path)
 - Replacements for Linear, Conv1d, Conv2d, ... hxtorch.Linear(in features, out features, bias, num sends, wait between events)
- Python Library "calix"
 - Default calibration routines
 - Allows custom parameter targets

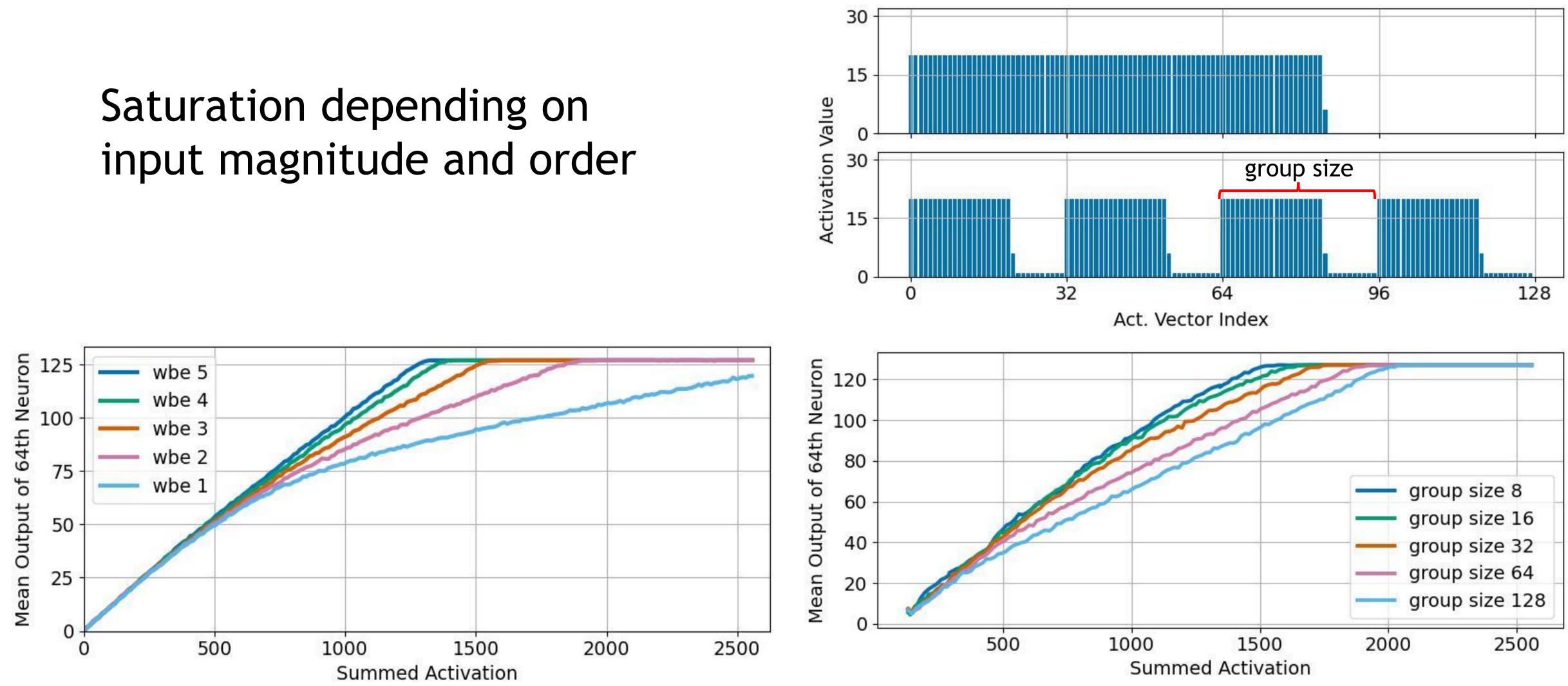


Many factors increase Noise:

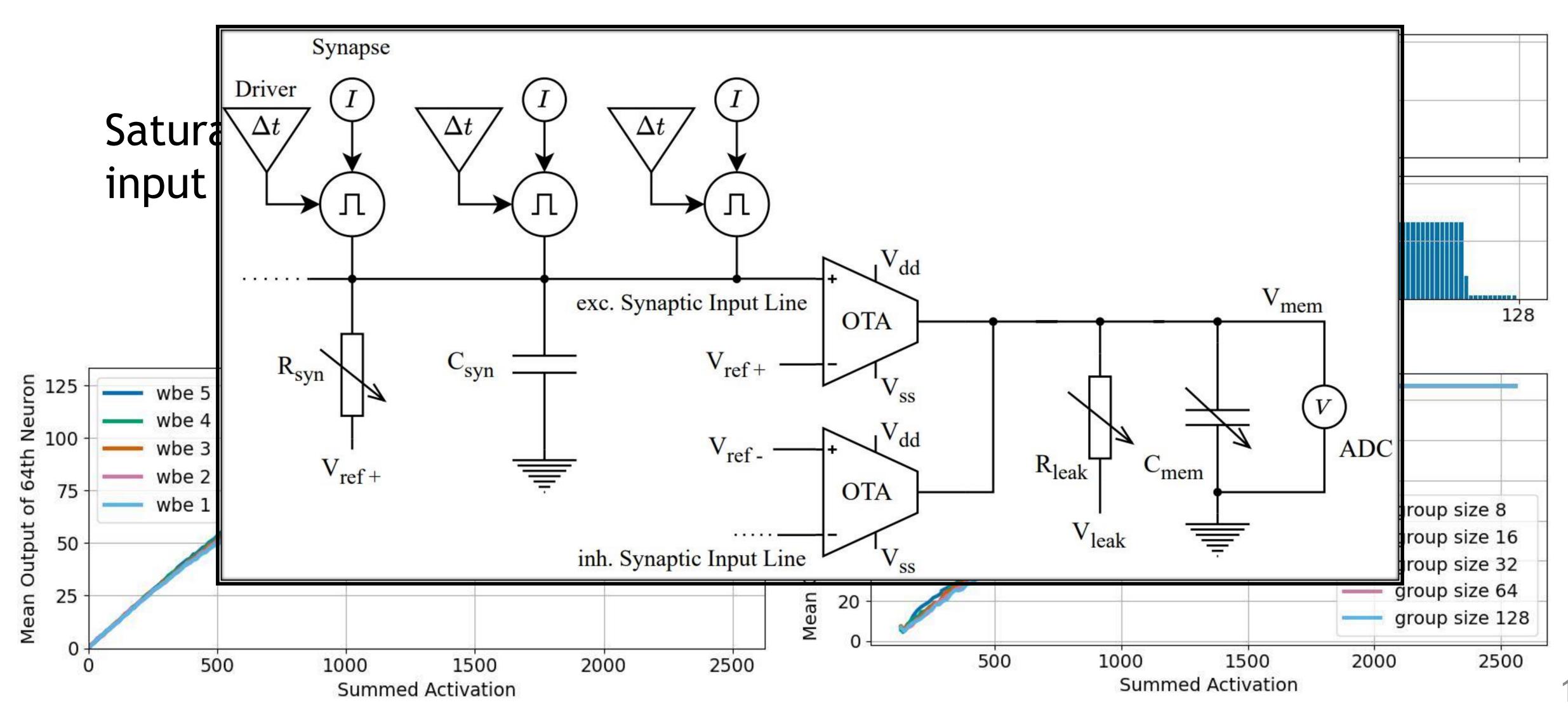
- Wait between Events
- Num Sends
- Number of input features
- Weight Magnitude
- OTA Gain
- Possibly more

NOISE

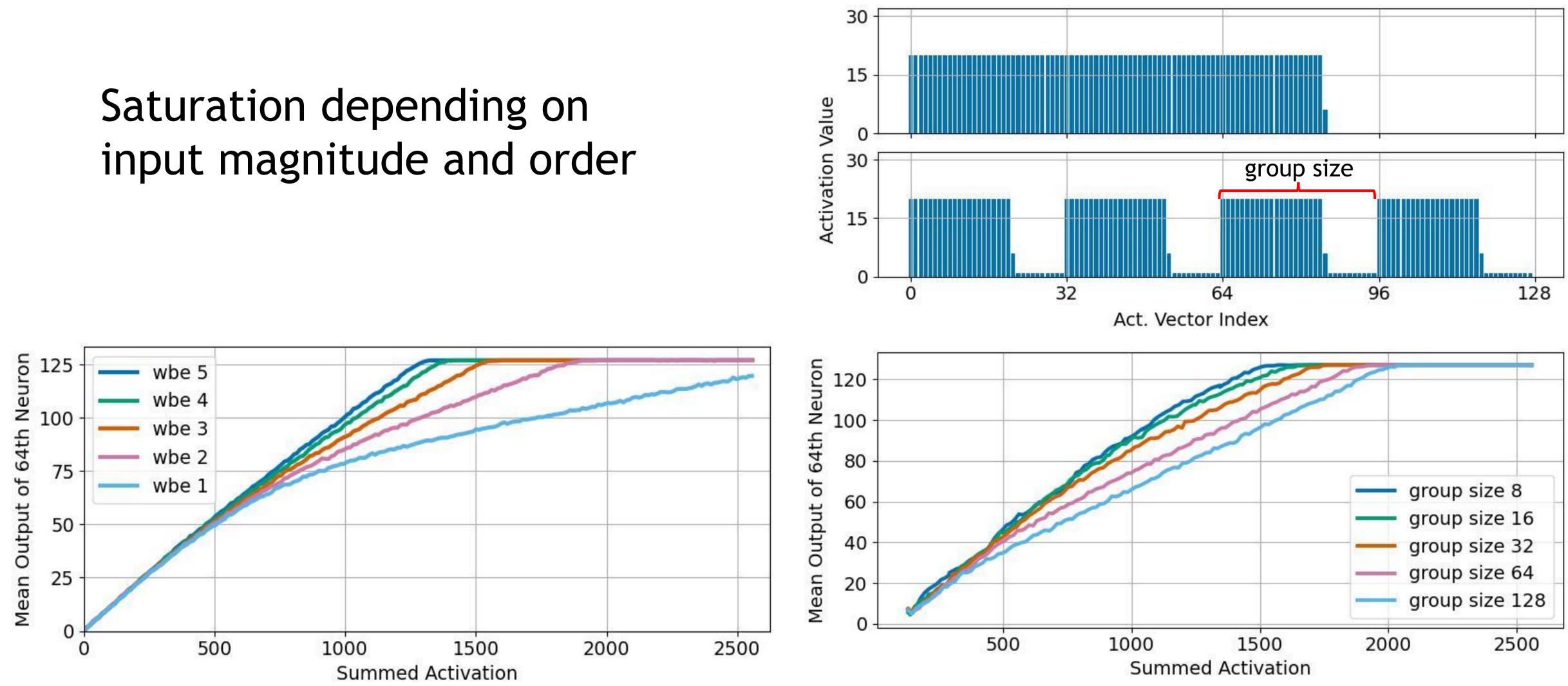




DYNAMIC SATURATION



DYNAMIC SATURATION



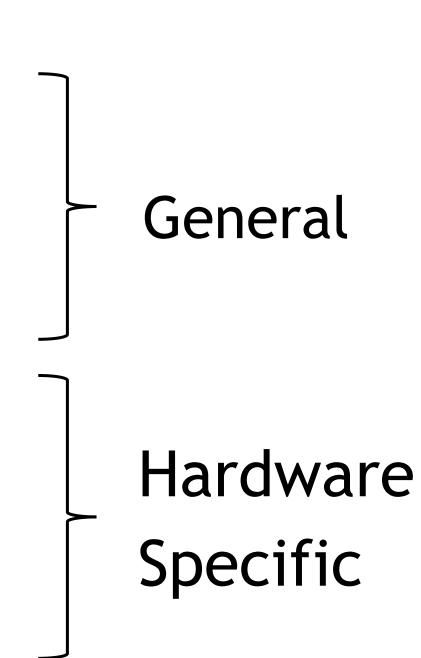
DYNAMIC SATURATION

- 1. Retraining on the hardware (HW-in-the-Loop) Allows adjustment to offsets and gain factors
- 2. NNs don't need linear components
- 3. Improve translation to the analog domain
- 4. Optimizing the calibration for a specific use-case noise vs. dynamic saturation vs. resolution vs. uniformity

- Retraining on the hardware (HW-in-the-Loop) Allows adjustment to offsets and gain factors
- 2. NNs don't need linear components
- 3. Improve translation to the analog domain
- 4. Optimizing the calibration for a specific use-case noise vs. dynamic saturation vs. resolution vs. uniformity

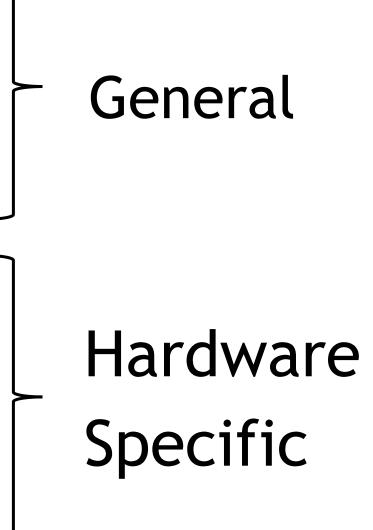
General

- Retraining on the hardware (HW-in-the-Loop) Allows adjustment to offsets and gain factors
- 2. NNs don't need linear components
- 3. Improve translation to the analog domain
- 4. Optimizing the calibration for a specific use-case noise vs. dynamic saturation vs. resolution vs. uniformity



- Retraining on the hardware (HW-in-the-Loop) Allows adjustment to offsets and gain factors
- 2. NNs don't need linear components
- 3. Improve translation to the analog domain
- 4. Optimizing the calibration for a specific use-case noise vs. dynamic saturation vs. resolution vs. uniformity

NNs Can tolerate static imperfections: -reduced uniformity -static non-linearities



NNs are sensitive to dynamic imperfections: - Noise - dyn. saturation

TRANSLATION APPROACHES

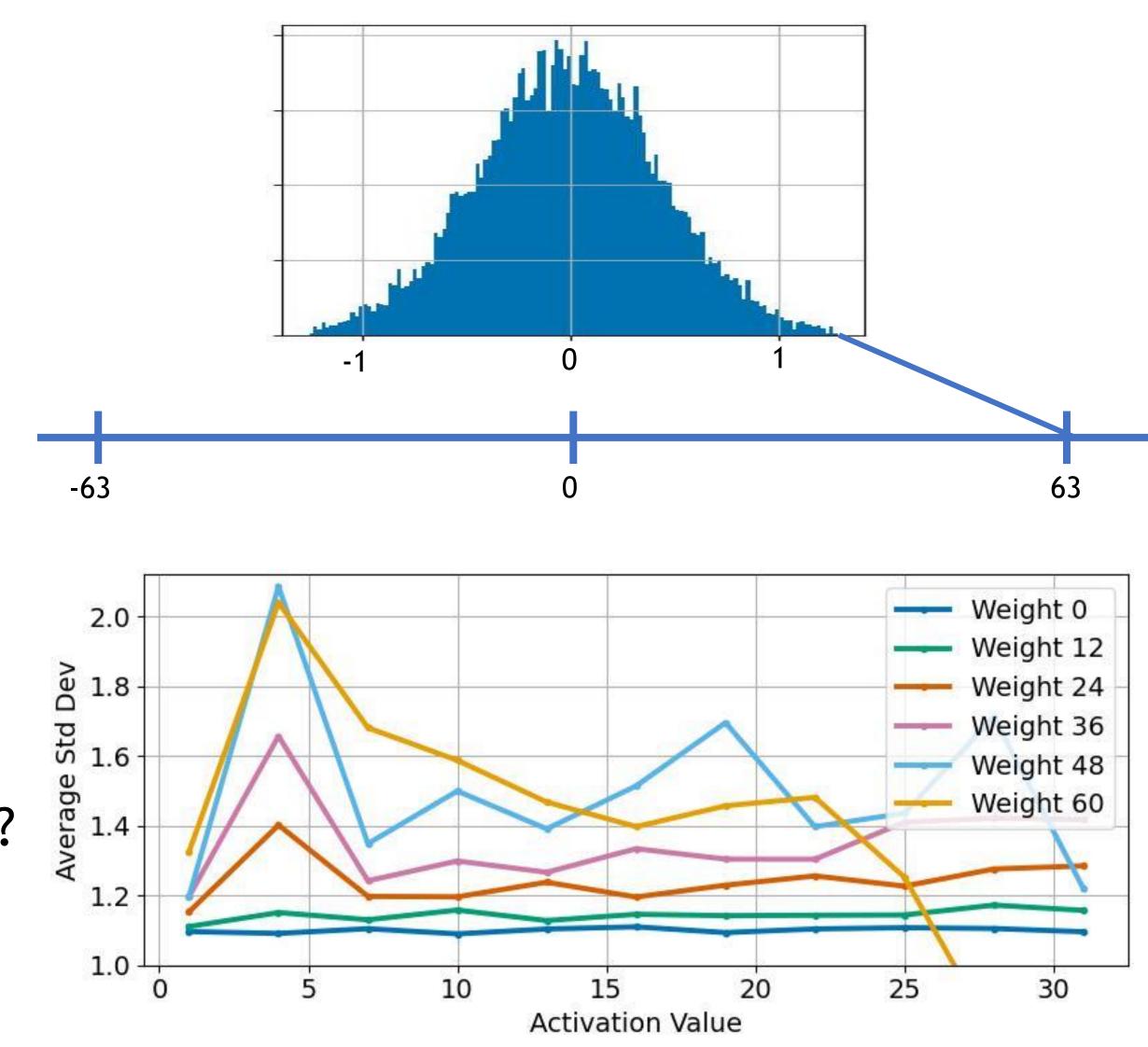
Uniform symmetric quantization:

 $y = \text{quantize}(x) = \text{clip}(\text{round}(x \cdot s))$

But how to choose the scaling factor during training?

- 1. Use a static scaling factor
- 2. Dynamically adjust the scaling factor for each batch
- 3. Use an exponential moving average

Can we clip small noisy input activations? Turns out ineffective 🛞



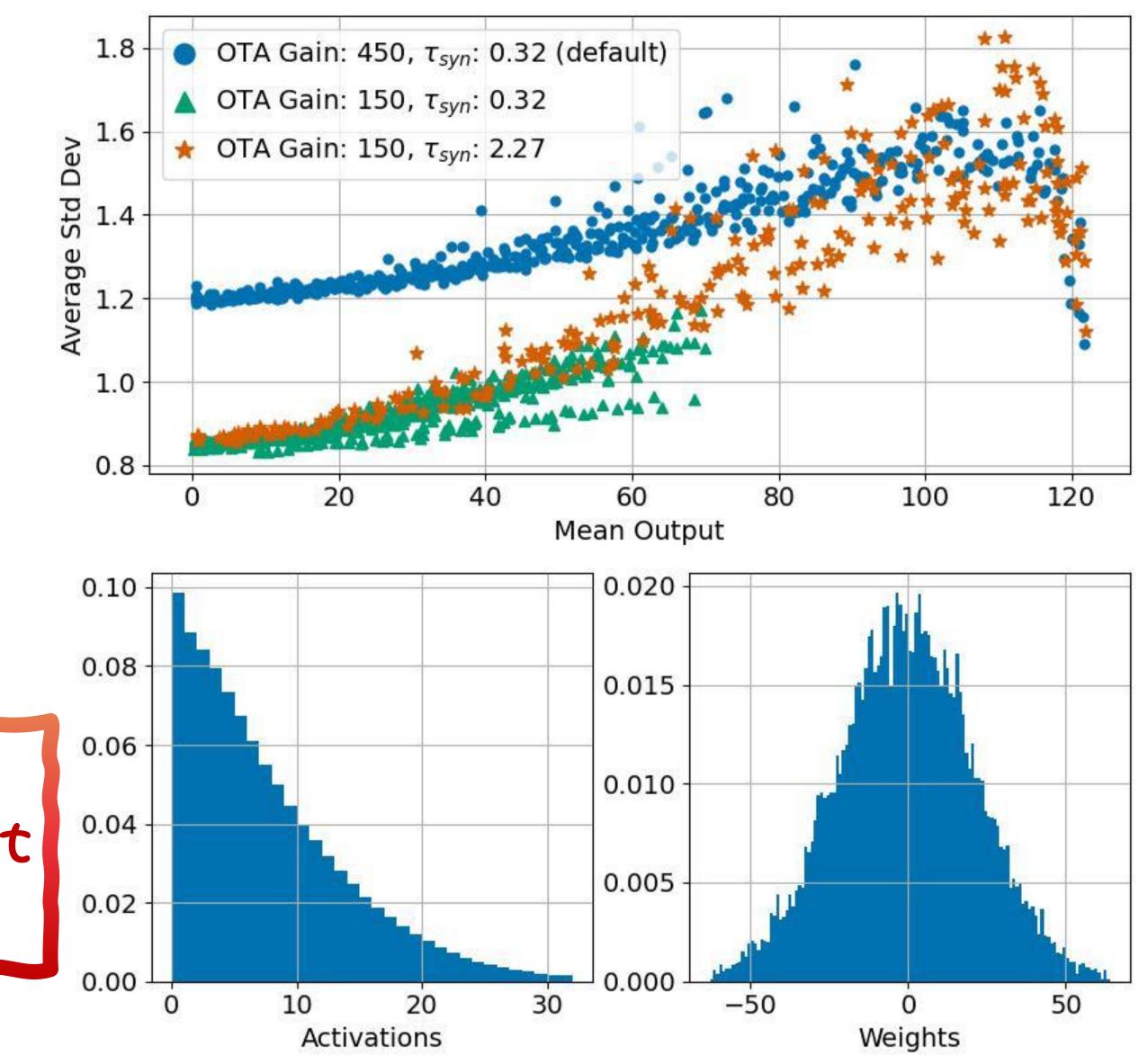
CUSTOM CALIBRATION

Reducing OTA Gain reduces Noise

The synaptic input time constant increases gain <u>but</u> also the risk of dynamic saturation

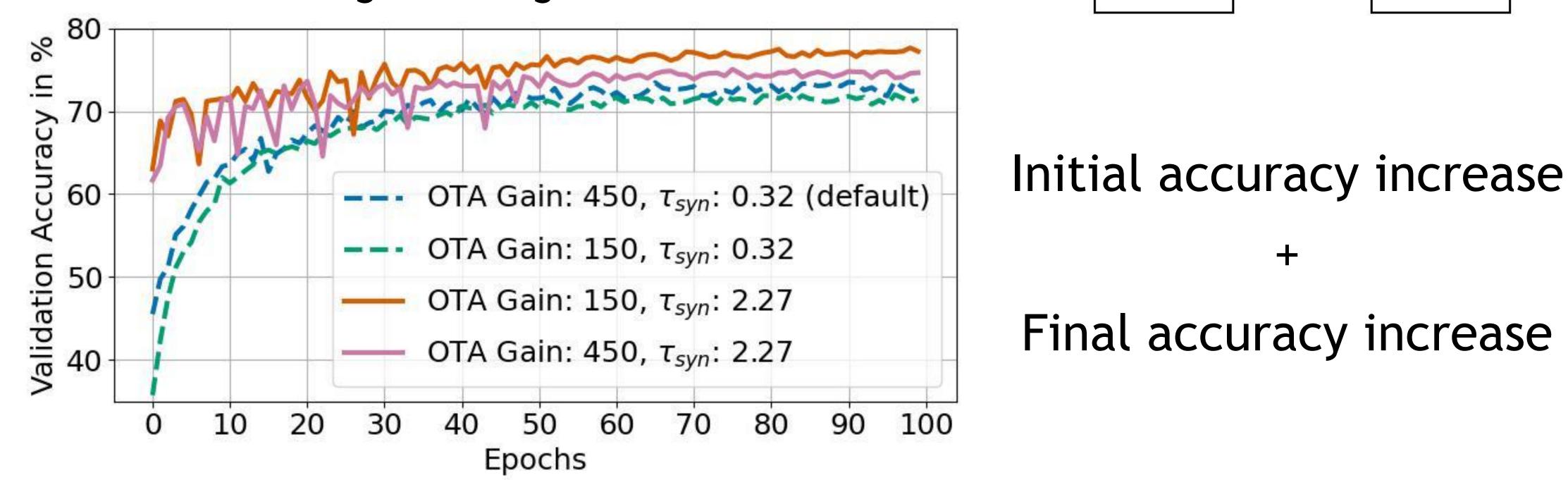
 \rightarrow Increasing the synaptic input time constant restores gain with smaller noise

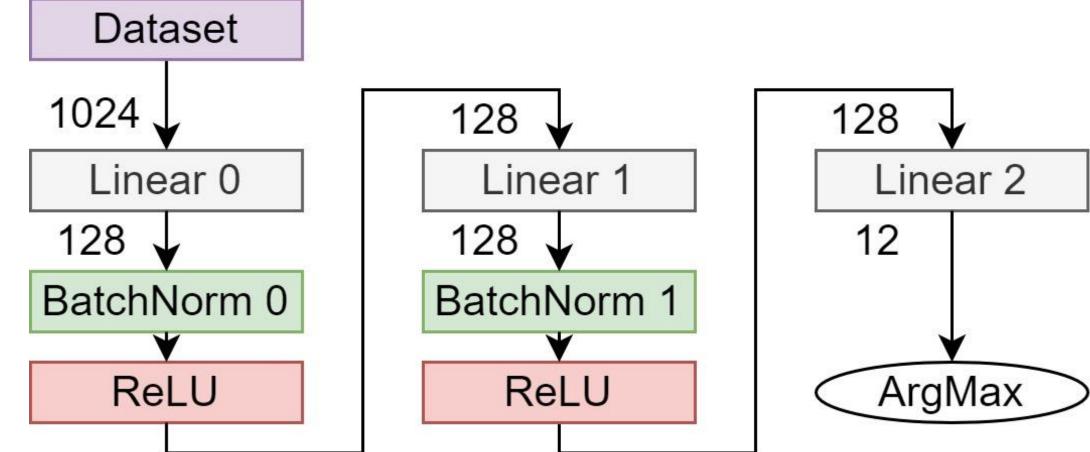
Typical distributions of NNs allow an increased time constant without dyn. saturation



TRAINING RESULTS

- MLP with BatchNorm
- SpeechCommands V1 Log Mel Spectrogram
- After full precision training: Retraining on analog Hardware





CONCLUSION

We show:

- Factors influencing the analog imperfections
- Algorithmic adaptions to the imperfections
- Guidelines to improve the calibration
- Accuracy improvement of 7% with our custom calibration

HW Calibration	Default	Custom	
Plain Transfer	17.73 %	57.93 %	
HW-in-the-loop	68.74 %	75.55 %	

CONCLUSION

We show:

- Factors influencing the analog imperfections
- Algorithmic adaptions to the imperfections
- Guidelines to improve the calibration
- Accuracy improvement of 7% with our custom calibration

HW Calibration	Default	Custom
Plain Transfer	17.73 %	57.93 %
HW-in-the-loop	68.74 %	75.55 %

Recommendations:

- 1. Static quantization scaling
- 2. Reduce OTA Gain to reduce base noise
- 3. Increase global gain for few input features
- 4. Reduce integration time

Test the BrainScaleS-2 system from your browser:

ebrains.eu

TRY IT YOURSELF

