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BRAINSCALES-2

Purpose:
Energy Efficiency

Scalability

Mixed Signal Chip:
Digital I/O

Analog Core

Applications:
Neuromorphic Computing

Spiking Neural Networks

Artificial Neural Networks
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MATRIX MULTIPLICATION
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ANALOG MATRIX MULTIPLICATION
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ANALOG MATRIX MULTIPLICATION
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PROGRAMMING INTERFACE

Pytorch Extension “hxtorch”

• Global chip initialization with static functions
 

 hxtorch.init_hardware(calib_path)

• Replacements for Linear, Conv1d, Conv2d, …

 hxtorch.Linear( in_features, out_features, bias,
                 num_sends, wait_between_events)

Python Library “calix”

• Default calibration routines

• Allows custom parameter targets
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CAVEATS OF ANALOG HARDWARE
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Static Variations Non-Linearities



NOISE
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Many factors increase Noise:

• Wait between Events

• Num Sends

• Number of input features

• Weight Magnitude

• OTA Gain

• Possibly more



DYNAMIC SATURATION
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Saturation depending on 

input magnitude and order group size
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Saturation depending on 
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DYNAMIC SATURATION
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Saturation depending on 

input magnitude and order group size



DEALING WITH IMPERFECTIONS

1. Retraining on the hardware (HW-in-the-Loop)
Allows adjustment to offsets and gain factors

2. NNs don’t need linear components

3. Improve translation to the analog domain

4. Optimizing the calibration for a specific use-case
noise vs. dynamic saturation vs. resolution vs. uniformity
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General

Hardware

Specific

NNs can tolerate
static imperfections:
-reduced uniformity
-static non-linearities

NNs are sensitive to 
dynamic imperfections:

- Noise
- dyn. saturation



TRANSLATION APPROACHES

Uniform symmetric quantization:

𝑦 = quantize 𝑥 = clip round 𝑥 ⋅ 𝑠

But how to choose the scaling factor 

during training?

1. Use a static scaling factor

2. Dynamically adjust the scaling factor 
for each batch

3. Use an exponential moving average

Can we clip small noisy input activations?

Turns out ineffective
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CUSTOM CALIBRATION

Reducing OTA Gain reduces Noise

The synaptic input time constant 
increases gain
but also the risk of dynamic saturation

→ Increasing the synaptic input time 
constant restores gain with smaller 
noise
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Typical distributions of NNs
allow an increased time constant

without dyn. saturation



TRAINING RESULTS
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• MLP with BatchNorm

• SpeechCommands V1

Log Mel Spectrogram

• After full precision training:

Retraining on analog Hardware

Initial accuracy increase

+

Final accuracy increase



CONCLUSION

We show:

• Factors influencing the analog 

imperfections

• Algorithmic adaptions to the 

imperfections

• Guidelines to improve the 

calibration

• Accuracy improvement of 7% with

our custom calibration
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HW Calibration Default Custom

Plain Transfer 17.73 % 57.93 %

HW-in-the-loop 68.74 % 75.55 %
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HW Calibration Default Custom

Plain Transfer 17.73 % 57.93 %

HW-in-the-loop 68.74 % 75.55 %

Recommendations:

1. Static quantization scaling

2. Reduce OTA Gain to reduce base noise

3. Increase global gain for few input 

features

4. Reduce integration time



TRY IT YOURSELF

Test the BrainScaleS-2 system from your browser:

ebrains.eu
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