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Challenges:

4

 Varying AI Requirements 
• New data Collections
• Application requirements change
• Addition of new sensors (Camera(s), Radars, Lidars etc. )
• Changes in the AI model
• Change in the accuracy requirements

 Change in AI Requirements directly impacts
• Power Consumption 
• Hardware resource utilization 

 Major Goal For Safety Critical Applications ( Automotive, 
Space, etc.) 
• Fulfil AI application requirements
• Ensuring reliability against faults 

( i.e., Single Event Upsets, Single Event Transients, 
Aging, etc.)

Fault-Free Execution [1]

Erroneous Execution [1]

[1] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer, and  S. W. Keckler, “Understanding 
error propagation in deep learning neural network (dnn) accelerators and applications,” SC 17, 2017.
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Traditional way of Implementing Application-Specific Accelerators

September 27, 2023 6Footer

(a) FMCW radar hand gesture samples (b) SVHN samples 
(c) Transformed MNIST dataset

Traditional way of executing on 
application specific accelerators

 Considers one Dataset/Task

 Considers one sensor Modality (one 
type of input data)

 Mainly considers correlated tasks

 Multiple datasets are emulated as multiple 
tasks 

T1: FMCW radar hand gesture samples 
T2: SVHN samples 
T3: Transformed MNIST dataset
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Shared Layers for CNNs Accelerator
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(a) FMCW radar hand gesture samples (b) SVHN samples (c)
Transformed MNIST dataset

[1] S. Albawi, T. A. Mohammed and S. Al-Zawi, "Understanding of a convolutional neural network," 2017 
International Conference on Engineering and Technology (ICET), Antalya, Turkey, 2017, pp. 1-6, doi: 
10.1109/ICEngTechnol.2017.8308186.

Understanding of a Convolutional Neural Network [1]

Lower Layers learns 
low-level features 
(i.e., edges, curves, 
blobs, etc.).

Deeper Layers learns 
high-level (or more 
abstract) features

Traditional way of executing on 
application specific accelerators
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Shared Layers for CNNs Accelerator
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Our Approach:
 Considers multiple datasets/Tasks from 

different modalities
 Hardware efficient and power efficient

 One accelerator instead of three
 Reuse of the weights

 Complements the previously proposed 
model compression methods ( i.e.,  
quantization and pruning considering 
multiple tasks/datasets)

 Considers un-correlated tasks

T1: FMCW radar hand gesture samples 
T2: SVHN samples 
T3: Transformed MNIST dataset (added 
noise) Fused CNN Architecture

(a) FMCW radar hand gesture samples (b) SVHN samples 
(c) Transformed MNIST dataset
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Fused and Branched Architectures

September 27, 2023 9Footer

Fused Architecture

Branched Architecture

Fused model: 
This is an un-branched model, where all the tasks share all the layers of the 
neural network

Branched Model:
It consists of tasks-specific branches and shares only particular layers



www.ihp-microelectronics.com  © 2018 - All rights reserved

Fused and Branched Architectures
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Branched Architecture [2]

Branched Model:
It consists of tasks-specific branches and shares only particular layers

Advantages:
1) Task isolation in case of faults (faults will not affect entire network)
2) Task-specific bit-stream reconfiguration in FPGAs (no need to reconfigure entire network)
3) Selective replication of only specific layers (e.g., more vulnerable layers or tasks-specific layers) 
4) Addition of sub-task (i.e. T3:Color)  
5) Adding extra layers to achieve more accuracy for specific tasks

[2] R. T. Syed, M. Andjelkovic, M. Ulbricht and M. Krstic, "Towards Reconfigurable CNN Accelerator for FPGA Implementation," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 3, pp. 1249-1253, March 2023, doi: 10.1109/TCSII.2023.3241154.
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Implementation Results
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 FMQP (most optimized FM) 
• Achieves very good accuracy 
• Quantized using QAT, Pruned (magnitude based 

pruning) 
• Consume fewer hardware resources as compared 

to FM, FMP, FMQ

 BMQP (most optimized branched model) 
• Slightly higher accuracy compared to FMQP 
• Slightly lower latency compared to FMQP
• Higher power consumption and hardware 

utilization compared to FMQP 
• Offers reliability advantages (discussed before)

Complete Results Analysis: R. T. Syed, M. Andjelkovic, M. Ulbricht and M. Krstic, "Towards Reconfigurable CNN Accelerator for FPGA Implementation," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 3, pp. 1249-1253, March 2023, doi: 
10.1109/TCSII.2023.3241154.
[1] Values marked with a superscript ’1’ in Table are additional resource utilization when T3c is added
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Reconfigurable CNN Accelerators 
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 Multiple hardware copies with multiple operating modes

 Trade-off between reliability, power consumption and high performance

 Typically used for multi-core processors, not common for AI accelerators

 Operating modes for 3 accelerators

 Fault-tolerant (FT) mode 

 N-modular redundancy (DMR, TMR)

 All accelerators execute all tasks

 SET, SEU, SEU in CRAM

 High-performance (HP) mode

 Parallel execution of tasks

 De-stress mode (DS) mode (Aging aware)

 One accelerator is active at a given time

 Reduces aging and power consumption

Traditional approach with single-task accelerators
would require 9 accelerators for TMR with 3 tasks

Accelerator 1

Accelerator 2

Accelerator 3
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Towards a Fully Reconfigurable/Adaptable AI Processing System
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 Four Building Blocks
1. On-Chip Sensors 

2. Reconfigurable RISC-V Cores

3. Reconfigurable AI accelerators

4. Reconfigurable hardware (i.e., 
FPGAs) 
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Summary
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1. Fused and Branched models

 Shared-layers approach for multiple tasks on application-specific CNN accelerators.

 Experimental results

2. Reconfigurable CNN accelerators 

 FT, HP, and DS modes

 Implementation results (will be published soon)

3. Future work 

 Towards a Fully Reconfigurable/Adaptable AI processing system consisting of on-chip 
sensors, quad-core RISCV processors, Reconfigurable AI Accelerators, and 
Reconfigurable hardware (i.e., FPGAs) 
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