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Superconducting Magnets in Particle Accelerators

Simulation of particle trajectories in a

solenoid
Source: APS-TD Fermilab

e Superconducting (SC) Magnets are critical
to controlling particle trajectory

e Due to electron phonon coupling, these
magnets have no resistance, allowing them
to conduct high currents and induce strong
magnetic fields

Nb,-Superconducting cables
Source: APS-TD
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Magnet Quench Event

e A magnet quench occurs when the SC magnet goes from its superconducting state to a resistive state.

In data, this is seen as the existence of voltage, due to increase in temperature at the site of quench.

e This is a highly energetic event that causes electromagnetic disturbances which can manifest as
mechanical disturbance, heat, or sound.

e Quenching can cause physical damage to the magnet, resulting in high replacement and repair costs

e For example, MQXF magnets undergo ~20 quenches, each costing $15k. With two trainings per day for
two weeks, the total cost can be up to $300k per training. For 2000 magnets at an accelerator complex
this is $600M

Ramp 7 data within 10ms around the quench
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Quench Training

e \When testing the magnet, we find that SC magnets show a progressive increase in the
quenching current, every time they are subjected to a quench.
o Cause: Electromagnetic forces causing small movements in magnet
e Magnets then must be “trained” by ramping up the current until the magnet reaches the desired
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Dipole model HFDMO05 quench history.
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How can we detect a quench with data?
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Acoustic data from microphonic sensors
gives us information about the release of
energy, cracking of the epoxy in
impregnated magnets, or other possible
mechanical disturbances.

These sensors run along the length of the
magnets (155cm)

Recall v = 343m/s

sound

Sampling rate from 100kHz to 1MHz
depending on magnet
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Quench antenna detect magnetic field
perturbations caused by current redistribution

Antenna run the length of the magnet and have

a unique geometry that may localize the quench.

We have lead and return end channels that

measure similar voltages # Fermilab



Energetic Picture of the Magnet

A quench event is an extreme energetic release, which can be seen most explicitly as
mechanical, thermal, acoustic disturbances. We can do our best to extract energy in time and
space

+ If we would like to detect these energetic changes, the best way to do so is by identifying the
features of our data most directly associated with energy (J)

* The direct causes of the quench in most cases is largely unknown and there might be known
energetic disturbances that show up as precursors
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Developing a Dynamic Learning Algorithm

Since we don’t explicitly know the cause of the quench beforehand, we can do our
best to input our features that correspond to energetic disturbances into a full

connected autoencoder.

To simulate real time inference along a ramp of 10 minutes, we update the
weights every 10s, with a window size of 10ms, and a step size of 10us. Then
we calculate reconstruction loss on each sample. The trigger threshold is
updated based on the median of the log reconstruction loss
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A uniform activation function
(ELU) is used at every layer
of the encoded network to
capture these energetic
features
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Searching for Anomalies in Acoustic Data
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We see that there are indeed precursors in the latent space of the autoencoder that
might contribute to a quench downstream. These are captured in the dynamically
updated weights.

Trigger Time on-0.625
Log reconstruction loss on [-1.0, -7e-06]
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Searching for Anomalies in QA Data

In our quench antenna data, anomaly detection must take into account the instrumentation.

There are hum frequencies caused by the power supply that must be filtered out. There is also
correlated electrical noise that may be associated with anomaly, but also might be ambient

around the coil.

If we integrate the voltage, we must take into account pedestal subtraction to avoid false

scaling of the weights
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Correlated Noise and Background Removal

Correlation of Power Spectra -10s,0s

Correlation of Power Spectra 10

Correlation plot of power
: _ spectra for QA channels 90s
before the quench (left) and
10s before the quench (right).
" Correlations are decreases
between lead and return

-« channels (light pink) which
indicates disturbance in the
magnetic field.
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Viewing QA and Acoustic Triggers Together

We compute reconstruction loss in inference on every incoming data point. If the reconstruction loss

is greater than the updated weights trigger threshold, we quench (blue dotted line). The QA channels
are quieter in the time up to the quench event.

Sample QA Trigger
Trigger Time on-0.01800999976694584

Log reconstruction loss on [-0.99701, -1e-05]
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Log reconstruction loss on [-1.0, -7e-06]
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Viewing QA and Acoustic Together

However, QA data may pick up precursors to the quench that acoustic data does not due to
geometry along the sensor, and larger deviations in voltage that indicate changes in flux. Note
there is a difference in longitudinal and transverse quench propagation
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Conclusions

13

SC magnet data presents promising opportunities for quench prediction, and
potentially understanding the precursors associated to the event

We hope to test transformer models, and RL models that can handle multi-modal data
streams. However we are aware of the resource scaling issues of this project.
Current results show that we may trigger within -10s of the event on multiple ramps
Aligning acoustic and QA data gives us a deeper energetic picture of the magnet, but
still much to learn about quench propagation.

We are looking to
integrate our data
taking process in
a way that is
compatible with
our new machine
learning
infrastructure.
Codesign is
important!
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Localizing The Quench Geometrically

Even with correlated noise removal, and removal of the hum frequencies, we find that
certain channels that indicate high voltages that persist throughout the ramp training.

We can investigate the eigenfrequencies associated to a particular channel that might
correspond unknown precursors.
(Left) Intensities of normalized
voltage along channels
aligned geometrically

We find that certain regions
correspond to field
disturbance which which
appears in our reconstruction
loss, but ultimately does not
affect our anomaly detection
significantly
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Ramps and Trigger Times

Architecture

Dense Layers
(Uniform Activation)

Dense Layers
(Uniform Activation)

16

Features

rolling window stats,
abs_max

rolling window stats,
abs_mayx, integral

Loss Function

MSE

LAP + w*MSE

Data Streams

Acoustic

QA

Trigger Times

Ramp 1: -7.44921875,
Ramp (n+1):

n=3: -3.794921875
n=7:-2.47265625
n=11: -0.625

Ramp 1: -12.514,
Ramp (n+1):

n=3: -2.541
n=7:-0.018
n=11:-1.982421875
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