Imperial College London

Hardware-aware pruning of real-time neural networks

Benjamin Ramhorst and George A. Constantinides Imperial College London Vladimir Lončar MIT

Outline

Background

Hardware-aware pruning

Results

Conclusions

hls4ml

Full on-chip design and high parallelism – high resource utilisation

Pruning

Pruning – sparsifying the network by setting *less important* weights to zero:

- Typically implemented iteratively: zero out some weights – fine-tune model with some of the weights set to zero – increase sparsity and repeat
- To help pruning, add *l*₁ regularisation
- LeCun et al. (1989) [4], Han et al. (2015) [5]

Unstructured pruning

Unstructured pruning – little hardware improvements – requires additional co-design:

 Compressed sparse row (CSR) / compressed sparse column (CSC) require three attributes for every non-zero element

Structured pruning

Structured pruning – significant hardware improvements, but greater impact on accuracy:

 Safely ignore last column in matrix-vector multiplication and set last element in output to zero

TensorFlow Model Optimization

Powerful tool for optimizing Keras & TensorFlow models

Iteratively removes low-magnitude weights

Supports:

- Unstructured pruning for all layers
- Block pruning (m, n) for 2-dimensional matrices
- Structural pruning (m, n) applied to the last dimension of tensor
- Latency pruning for XNNPack, only applicable to 1x1 Conv2D layers

TensorFlow Model Optimization

Drawbacks of TensorFlow Model Optimization:

- No support for **structured pruning in Conv1D / Conv2D layers**
- No support for automatically removing zero structures from the pruned network

 little hardware improvements
- No support for gradient-based weight ranking
- The **sparsity** of each layer needs to chosen **manually** OR **equal layer-wise sparsity**

Outline

Background

Hardware-aware pruning

Results

Conclusions

Hardware-aware pruning

RF = 1 - design is "fully unrolled"

One weight = One DSP

HLS compiler optimizes any multiplications by zero

Fully unrolled designs **do not scale**

Hardware-aware pruning

Extension for RF > 1 - prune all the weights processed by the same DSP

1	2	3	4	
5	6	7	8	
9	10	11	12	

Pruning for BRAM optimisation

Group "consecutive" DSP blocks to remove one block of RAM

Knapsack problem

Given a set of n items, each with value v_i and weight w_i , what is the subset of weights that maximises value, while keeping the total weight under the capacity of the knapsack.

 $\max_{x} \boldsymbol{v}^{T} \boldsymbol{x}$
s.t. $\boldsymbol{w}^{T} \boldsymbol{x} \leq c$
 $x_{i} \in \{0, 1\}$

Pruning algorithm

1. Identify hardware-aware tensors and add custom regularisation loss

2. Solve knapsack problem, with capacity set to *s*% of initial resources:

- Selects what groups to keep and remove

3. Retrain remaining weights

4. Update sparsity *s*% and repeat steps 3 & 4

Optimising Vivado DSP

Optimize model

5

optimized_model = optimize_model(

baseline_model, model_attributes, VivadoDSPEstimator, scheduler,

X_train, y_train, X_val, y_val, batch_size, epochs, optimizer, loss_fn, metric, increasing, rtol

Outline

Background

Hardware-aware pruning

Results

Conclusions

Jet classification

Well-studied particle physics benchmark – Duarte *et al.* [2]

Consider 16 particle features (multiplicity, momentum etc.) and classify into **"interesting"** collisions *W* boson, *Z* boson, *t* quark or **"background"** collisions quark *q* or gluon *g*.

Jet classification

RF	Model	Quantised accuracy [%]	Latency [ns]	LUT	FF	BR IM (reduction)	DSP (reduction)
	BM	76.39	168	42,103	25,790	951	2,133
2	BP-DSP	76.29	105	5,504	3,036	246 (3.9x)	175 (12.2x)
	BP-MO	76.23	105	9,971	3,682	182 (5.2x)	217 (9.8x)
	BM	76.39	210	25,274	21,583	478	1,069
4	BP-DSP	75.84	161	6,484	4,232	138 (3.5x)	90 (11.9x)
	BP-MO	75.83	161	6,835	3,736	111 (4.3x)	92 (11.6x)
	BM	76.39	315	20,949	19,613	241	537
8	BP-DSP	75.96	252	9,632	5,488	89 (2.7x)	68 (7.9x)
	BP-MO	75.76	259	10,368	5,841	70 (3.4x)	83 (6.5x)
	BM	76.39	539	19,141	19,598	124	271
16	BP-DSP	76.06	392	6,693	5,322	54 (2.3x)	47 (5.8x)
	BP-MO	75.90	413	10,701	7,630	53 (2.3x)	71 (3.9.)

Effects of pruning on jet classification post P&R with 7ns clock period

BM = Baseline

BP-DSP = DSP-optimised model

BP-MO = BRAM- & DSP optimised

SVHN classification

Image source: http://ufldl.stanford.edu/housenumbers/

SVHN classification

RF	Model	Quantised accuracy [%]	Latency [µs]	LUT	FF	BRAM (reduction)	DSP (reduction)	
3	BM	90.80	57.03	101,111	65,43	2,140	4,683]
3	BP-DSP	92.36	43.58	59,279	46,5 34	1,550 (1.4x)	1,215 (3.9x)	
0	BM	90.80	90.81	55,130	48,166	820	1,713	
,	BP-DSP	91.06	84.08	47,854	48,441	574 (1.4x)	471 (3.6x)	
27	BM	90.80	212.25	50,292	47,451	252	628	
21	BP-DSP	91.88	205.53	47,658	50,585	290	285 (2.2x)	

Effects of pruning on SVHN classification post P&R with 8ns clock period

Fashion MNIST classification

Bag (8)

Trouser (1)

Ankle boot (9)

Pullover (2)

Pullover (2)

T-shirt/top (0)

Fashion MNIST classification

Clock [ns]	Model	Accuracy [%]	Latency [µs]	LUT	FF	BRAM (reduction)	DSP (reduction)
10	BM	89.28	7.95	88,034	54,650	982	4,175
10	BP-MO	89.30	7.93	90,290	64,660	788 (1.2x)	881 (4.7x)
12	BM	89.28	9.52	86,403	52,295	982	4,175
12	BP-MO	89.30	9.50	85,845	63,092	466 (2.1x)	881 (4.7x)

Effects of heterogonous pruning on Fashion MNIST classification post P&R

Outline

Background

Hardware-aware pruning

Results

Conclusions

Conclusions

A novel, **hardware-aware pruning method**, derived from the underlying mapping to hardware and modelled using linear programming

Extensions to hls4ml, now fully supporting **quantisation-aware training with QKeras**, **hardware-aware pruning** and **real-time inference**

Between **55%** and **92%** reductions in **DSP** and up to **81%** in **BRAM** utilisation

Future:

Extensions to other platforms and layers

Integration with mixed pruning and quantisation methods

Links & More

Source code:

- <u>https://github.com/fastmachinelearning/hls4ml/pull/768</u>
- <u>https://github.com/fastmachinelearning/hls4ml/pull/809</u>

Branch & Docs:

• <u>https://github.com/fastmachinelearning/hls4ml/tree/hardware-aware-pruning</u>

Questions?

References

[0] Parts of this presentation were adopted from an earlier presentation given to the FastML community: "hls4ml Optimization API". April 21st 2023.

[1] C. N. Coelho, A. Kuusela *et al.,* "Automatic heterogeneous quantization of deep neural networks for low-latency inference on the edge for particle detectors," Nature Machine Intelligence, vol. 3, no. 8, p. 675–686, 2021

[2] J. Duarte, S. Han *et al.,* "Fast inference of deep neural networks in FPGAs for particle physics," Journal of Instrumentation, vol. 13, no. 07, p. P07027, jul 2018. [Online]. Available: <u>https://dx.doi.org/10.1088/1748-0221/13/07/P07027</u>

[3] T. Aarrestad *et al.,* "Fast convolutional neural networks on FPGAs with hls4ml," Machine Learning: Science and Technology, vol. 2, no. 4, p. 045015, jul 2021. [Online]. Available: https://dx.doi.org/10.1088/2632-2153/ac0ea1

[5] Y. Lecun, J. Denker, and S. Solla, "Optimal brain damage," vol. 2, 01 1989, pp. 598–605.

[6] S. Han, J. Pool et al., "Learning both Weights and Connections for Efficient Neural Network," in NIPS, 2015

[7] M. Shen et al. HALP: Hardware-Aware Latency Pruning. 2021