Imperial College Ui
London

Hardware-aware pruning of real-time neural networks

Benjamin Ramhorst and George A. Constantinides Vladimir Loncar
Imperial College London MIT

Outline

Background
Hardware-aware pruning
Results

Conclusions

hls4ml

Full on-chip design and high parallelism - high resource utilisation

Key variable - reuse factor (RF)

Previous compression studies:

- Quantization [1]

- Unstructured pruning [2, 3]

mult

mult

mult

mult

mult

vV VY ii %

mult

mult

reuse =4
use 1 multiplier 4 times

reuse = 2
use 2 multipliers 2 times each

reuse = 1
use 4 multipliers 1 time each

Image source:

https://fastmachinelearning.org/hls4ml/concepts.html

Pruning

Pruning - sparsifying the network by setting
less important weights to zero: before pruning after pruning

* Typically implemented iteratively: zero out
some weights - fine-tune model with some
of the weights set to zero - increase sparsity
and repeat

pruning
synapses

-—>

pruning

neurons

* To help pruning, add [; regularisation

* LeCun etal (1989) [4], Han etal. (2015) [5]

Image source: 4

https://towardsdatascience.com/pruning-neural-networks-1bb3ab5791f9

Unstructured pruning

Unstructured pruning - little hardware improvements - requires additional co-design:

* Compressed sparse row (CSR) / compressed sparse column (CSC) require three attributes for
every non-zero element

Structured pruning

Structured pruning - significant hardware improvements, but greater impact on accuracy:

- Safely ignore last column in matrix-vector multiplication and set last element in output to
Z€ero

—

TensorFlow Model Optimization

Powerful tool for optimizing Keras & TensorFlow models
[teratively removes low-magnitude weights

Supports:
* Unstructured pruning for all layers
* Block pruning (m, n) for 2-dimensional matrices
* Structural pruning (m, n) applied to the last dimension of tensor

* Latency pruning for XNNPack, only applicable to 1x1 Conv2D layers

TensorFlow Model Optimization

Drawbacks of TensorFlow Model Optimization:
* No support for structured pruning in Conv1lD / Conv2D layers

* No support for automatically removing zero structures from the pruned network
— little hardware improvements

* No support for gradient-based weight ranking

* The sparsity of each layer needs to chosen manually OR equal layer-wise sparsity

Outline

Background
Hardware-aware pruning
Results

Conclusions

Hardware-aware pruning

11

12

=N

8 DSP
USED

RF =1 - design is "fully unrolled”

One weight = One DSP

HLS compiler optimizes any multiplications by zero

Fully unrolled designs do not scale

Hardware-aware pruning

2 3 4
6 7 8
10 11 12

2 DSP
USED

Extension for RF > 1 - prune all the weights processed by the same DSP

2 3 4
0 0 0
10 11 12

Pruning for BRAM optimisation

Group “consecutive” DSP blocks to remove one block of RAM

11 9 7 5

12 10 8 6

9 10 11 12 3 BRAM
USED

Knapsack problem

Given a set of n items, each with value v; and
weight w;, what is the subset of weights that
maximises value, while keeping the total weight
under the capacity of the knapsack.

max v’ x
X

st.wlix <c

X € {O, 1}

Image source: 13

https://en.wikipedia.org/wiki/Knapsack_problem

Pruning algorithm

1. Identify hardware-aware tensors and add custom regularisation loss

2. Solve knapsack problem, with capacity set to s% of initial resources:

- Selects what groups to keep and remove
3. Retrain remaining weights

4. Update sparsity s% and repeat steps 3 & 4

Optimising Vivado DSP

Optimize model
optimized_model = optimize_model(
baseline_model, model_attributes, |VivadoDSPEstimato scheduler,

X_train, y_train, X_val, y_val, batch_size, epochs, optimizer, loss_fn, metric, increasing, rtol

Outline

Background
Hardware-aware pruning
Results

Conclusions

Jet classification

Well-studied particle physics benchmark
— Duarte et al. [2]

Consider 16 particle features
(multiplicity, momentum etc.) and
classify into “interesting” collisions W
boson, Z boson, t quark or “background”
collisions quark g or gluon g.

Image source:

Observables

MmMDT
NB=12

M2,3=1,2
C52=0, 12
(},3=1,2
D25=1,2

2
Dga’ﬁ)z(la 1)’ (1a2)

Y. zlogz
Multiplicity

16 inputs

8

64 nodes
activation: ReLLU

8

32 nodes
activation: ReLLU

32 nodes
activation: ReLLU

8

5 outputs

activation: SoftMax

17

https://arxiv.org/pdf/1804.06913.pdf

Jet classification

| RF | Model | Quantised accuracy [%] | Latency [ns] | LUT | FF (reduction) | DSP (red

BM 76.39 168 42,103 | 25,790 951 2,133
2 BP-DSP 76.29 105 5,504 3,036 246 (3.9x) 175 (12.2x)
BP-MO 76.23 105 9,971 3,682 182 (5.2x) 217 (9.8x)
BM 76.39 210 25274 | 21,583 478 1,069
= BP-DSP 75.84 161 6,484 4,232 138 (3.5x) 90 (11.9x)
BP-MO 75.83 161 6,835 3,736 111 (4.3x) 92 (11.6x)
BM 76.39 315 20,949 | 19,613 241 537
8 BP-DSP 75.96 252 9,632 5,488 89 (2.7x) 68 (7.9x)
BP-MO 75.76 259 10,368 | 5,841 70 (3.4x) 83 (6.5x)

124 271
54 (2.3x)
(2.3x)

BM 76.39 539 19.141 | 19.598 |
16 | BP-DSP 76.06 392 6,693 | 57322
BP-MO 75.90 413 10,701 | 7.630

Effects of pruning on jet classification
post P&R with 7ns clock period BM = Baseline

BP-DSP = DSP-optimised model
BP-MO = BRAM- & DSP optimised

SVHN classification

: -
Image source: 19

http://ufldl.stanford.edu/housenumbers/

SVHN classification

RF Model Quantised accuracy [%] | Latency [ps] LUT BRAM (reduction) | DSP (reduction)
3 BM 90.80 57.03 101,111 | 65,43 2,140 4,683
BP-DSP 92.36 43.58 59,279 46 1,550 (1.4x) 1,215 (3.9x)
9 BM 90.80 90.81 55,130 48 820 1,713
BP-DSP 91.06 84.08 47,854 | 48,441 574 (1.4x) 471 (3.6x)
27 BM 90.80 212.25 50,292 47,45 252 628
BP-DSP 91.88 205.53 47,658 50,58 290 285 (2.2x)

Effects of pruning on SVHN classification post P&R with 8ns clock period

Fashion MNIST classification

Pullover (2) Pullover (2) T-shirt/top (0)

Image source:

https://www.tensorflow.org/datasets/catalog/fashion_mnist

Fashion MNIST classification

Clock [ns] Model Accuracy [%] | Latency [ps] LUT FF BRAM (reduction) | DSP (reduction)
10 BM 89.28 7.95 88,034 | 54,650 982 4,175
BP-MO 89.30 7.93 90,290 | 64,660 788 (1.2x) 881 (4.7x)
12 BM 89.28 9.52 86,403 | 52,295 982 4,175
BP-MO 89.30 9.50 85,845 | 63,092 466 (2.1x) 881 (4.7x)

Effects of heterogonous pruning on Fashion MNIST classification post P&R

Outline

Background
Hardware-aware pruning
Results

Conclusions

Conclusions

A novel, hardware-aware pruning method, derived from the underlying mapping to
hardware and modelled using linear programming

Extensions to hls4ml, now fully supporting quantisation-aware training with QKeras,
hardware-aware pruning and real-time inference

Between 55% and 92% reductions in DSP and up to 81% in BRAM utilisation

Future:
Extensions to other platforms and layers

Integration with mixed pruning and quantisation methods

Links & More

Source code:

* https://github.com/fastmachinelearning/hls4ml/pull/768

* https://github.com/fastmachinelearning/hls4ml/pull /809

Branch & Docs:

* https://github.com/fastmachinelearning/hls4ml/tree /hardware-aware-pruning

https://github.com/fastmachinelearning/hls4ml/pull/768
https://github.com/fastmachinelearning/hls4ml/pull/809
https://github.com/fastmachinelearning/hls4ml/tree/hardware-aware-pruning

Questions?

References

[0] Parts of this presentation were adopted from an earlier presentation given to the FastML community: “hls4ml
Optimization API”. April 215t 2023.

[1] C. N. Coelho, A. Kuusela et al., “Automatic heterogeneous quantization of deep neural networks for low-latency
inference on the edge for particle detectors,” Nature Machine Intelligence, vol. 3, no. 8, p. 675-686, 2021

[2] J. Duarte, S. Han et al,, “Fast inference of deep neural networks in FPGAs for particle physics,” Journal of
Instrumentation, vol. 13, no. 07, p. P07027, jul 2018. [Online]. Available: https://dx.doi.org/10.1088/1748-
0221/13/07/P07027

[3] T. Aarrestad et al., “Fast convolutional neural networks on FPGAs with hls4ml,” Machine Learning: Science and
Technology, vol. 2, no. 4,p. 045015, jul 2021. [Online]. Available: https://dx.doi.org/10.1088/2632-2153 /acOeal

[5] Y. Lecun, J. Denker, and S. Solla, “Optimal brain damage,” vol. 2, 01 1989, pp. 598-605.
[6] S. Han, J. Pool et al., “Learning both Weights and Connections for Efficient Neural Network,” in NIPS, 2015

[7] M. Shen et al. HALP: Hardware-Aware Latency Pruning. 2021

https://dx.doi.org/10.1088/1748-0221/13/07/P07027
https://dx.doi.org/10.1088/1748-0221/13/07/P07027

