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Full	on-chip	design	and	high	parallelism	–	high	resource	utilisation

Key	variable	-	reuse	factor	(RF)

Previous	compression	studies:

	 -	Quantization	[1]	

	 -	Unstructured	pruning	[2,	3]
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hls4ml

Image	source:	https://fastmachinelearning.org/hls4ml/concepts.html 

https://fastmachinelearning.org/hls4ml/concepts.html


Pruning
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Pruning	– sparsifying	the	network	by	setting	
less	important	weights	to	zero:
• Typically	implemented	iteratively: zero	out	
some	weights	– fine-tune	model	with	some	
of	the	weights	set	to	zero	– increase	sparsity	
and	repeat

• To	help	pruning,	add	𝒍𝟏 regularisation

• LeCun et	al.	(1989)	[4],	Han	et	al.	(2015)	[5]

Image	source:	https://towardsdatascience.com/pruning-neural-networks-1bb3ab5791f9

https://towardsdatascience.com/pruning-neural-networks-1bb3ab5791f9


Unstructured	pruning
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Unstructured	pruning	– little	hardware	improvements	–	requires	additional	co-design:
• Compressed	sparse	row	(CSR)	/	compressed	sparse	column	(CSC)	require	three	attributes	for	
every	non-zero	element	



Structured	pruning
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Structured	pruning	– significant	hardware	improvements,	but	greater	impact	on	accuracy:
• Safely	ignore	last	column	in	matrix-vector	multiplication	and	set	last	element	in	output	to	
zero



TensorFlow	Model	Optimization
Powerful	tool	for	optimizing	Keras &	TensorFlow	models

Iteratively	removes	low-magnitude	weights

Supports:

• Unstructured	pruning	for	all	layers

• Block	pruning	(m,	n)	for	2-dimensional	matrices

• Structural	pruning	(m,	n)	applied	to	the	last	dimension	of	tensor

• Latency	pruning	for	XNNPack,	only	applicable	to	1x1	Conv2D	layers
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TensorFlow	Model	Optimization
Drawbacks	of	TensorFlow	Model	Optimization:

• No	support	for	structured	pruning	in	Conv1D	/	Conv2D	layers

• No	support	for	automatically	removing	zero	structures	from	the	pruned	network	
– little	hardware	improvements

• No	support	for	gradient-based	weight	ranking

• The	sparsity of	each	layer	needs	to	chosen	manually OR	equal	layer-wise	sparsity
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Hardware-aware	pruning

RF	=	1	- design	is	”fully	unrolled”

One	weight	=	One	DSP

HLS	compiler	optimizes	any	multiplications	by	zero

Fully	unrolled	designs	do	not	scale
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Hardware-aware	pruning
Extension	for	RF	>	1	- prune	all	the	weights	processed	by	the	same	DSP
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Pruning	for	BRAM	optimisation
Group	“consecutive”	DSP	blocks	to	remove	one	block	of	RAM
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13Image	source:	https://en.wikipedia.org/wiki/Knapsack_problem#/media/File:Knapsack.svg

Knapsack	problem
Given	a	set	of	𝑛 items,	each	with	value	𝑣" and	
weight	𝑤",	what	is	the	subset	of	weights	that	
maximises	value,	while	keeping	the	total	weight	
under	the	capacity	of	the	knapsack.

max
#
𝒗$𝒙

s.t.𝒘$𝒙 ≤ 𝑐

             𝑥" ∈ {0, 1}

https://en.wikipedia.org/wiki/Knapsack_problem


Pruning	algorithm
1.	Identify	hardware-aware	tensors	and	add	custom	regularisation	loss

2.	Solve	knapsack	problem,	with	capacity	set	to	s%	of	initial	resources:

	 -	Selects	what	groups	to	keep	and	remove

3.	Retrain	remaining	weights

4.	Update	sparsity	s%	and	repeat	steps	3	&	4
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Optimising	Vivado	DSP
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Jet	classification
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Well-studied	particle	physics	benchmark	
–	Duarte	et	al.	[2]

Consider	16	particle	features	
(multiplicity,	momentum	etc.)	and	
classify	into	“interesting”	collisions	W	
boson,	Z	boson,	t	quark	or	“background”	
collisions	quark	q	or	gluon	g.

Image	source:	https://arxiv.org/pdf/1804.06913.pdf

https://arxiv.org/pdf/1804.06913.pdf


Jet	classification
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Effects	of	pruning	on	jet	classification	
post	P&R	with	7ns	clock	period BM	=	Baseline

BP-DSP	=	DSP-optimised	model

BP-MO	=	BRAM-	&	DSP	optimised



SVHN	classification

19Image	source:	http://ufldl.stanford.edu/housenumbers/

http://ufldl.stanford.edu/housenumbers/


SVHN	classification
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Effects	of	pruning	on	SVHN	classification	post	P&R	with	8ns	clock	period



Fashion	MNIST	classification

21Image	source:	https://www.tensorflow.org/datasets/catalog/fashion_mnist

https://www.tensorflow.org/datasets/catalog/fashion_mnist


Fashion	MNIST	classification
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Effects	of	heterogonous	pruning	on	Fashion	MNIST	classification	post	P&R
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Conclusions
A	novel,	hardware-aware	pruning	method,	derived	from	the	underlying	mapping	to	
hardware	and	modelled	using	linear	programming	

Extensions	to	hls4ml,	now	fully	supporting	quantisation-aware	training	with	QKeras,	
hardware-aware	pruning and	real-time	inference

Between	55% and	92% reductions	in	DSP and	up	to	81% in	BRAM utilisation

Future:

Extensions	to	other	platforms	and	layers

Integration	with	mixed	pruning	and	quantisation	methods
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Links	&	More
Source	code:

• https://github.com/fastmachinelearning/hls4ml/pull/768

• https://github.com/fastmachinelearning/hls4ml/pull/809

Branch	&	Docs:

• https://github.com/fastmachinelearning/hls4ml/tree/hardware-aware-pruning
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https://github.com/fastmachinelearning/hls4ml/pull/768
https://github.com/fastmachinelearning/hls4ml/pull/809
https://github.com/fastmachinelearning/hls4ml/tree/hardware-aware-pruning


Questions?
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