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e \We develop ML Particle Flow (MLPF):
a graph neural network that is highly
scalable and efficient at reconstruction
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ML-based reconstruction 1s an active area of research. In the interest of time,
I will focus on the recent MLPF developments that I’'m more familiar with.
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e But why MLPF? Scalability and portability!
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Scalable neural network models and terascale datasets for particle-flow reconstruction

Joosep Pala, Eric Wulll, Farouk Mokhtar, David Scuthwick, Mengke Zhang, Maria Girone, Javier Duarte _— NOW On ar X iV . 2309 067 82

We study scalab’e machine learning models for full event reconstruction in high- energy electron positron collisions based on a highly granular detector simulation. Particle flow
(PF) reconstruction can be formulated as a supervisec learning task using tracks and calerimeter clusters or hits, We compare a graph neural retwork and kernel-based

transformer and demgnstrate that both aveid guadratic memory allocation and computational cost while achieving realistic PF reconstruction. We show that hyperparameter tuning
on a supercomputer significantly improves the physics performance af the modals. We also demonstrate that the resulting madel is highly portable across hardware processors,
supperting Nvidia, AMD, and Intzl Habara cards. Finally, we demonstrate that the model can be trainad on highly granular inputs consisting of tracks anc calorimeater hits,
resulting in a comperitive ohysics performance with the baseline. Datasets and software to reproduce tae stdies are publishec following the findable, accessible, interoperabe,
and reusable (FAIR) principles,

[1] https:/zenodo.org/record/8260741
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Compact Linear Collider (CLIC)

e CLIC dataset is an open dataset of eTe collision events at a center of mass energy
\/E = 380GeV with full GEANT4 simulation available in the EDM4HEP format

The CLIC detector model is based on the CMS detector at CERN. It features
a superconducting solenoid with an internal diameter of 7 m, providing a
magnetic field of 4 T in the center of the detector. Silicon pixel and strip trackers, — §
the electromagnetic (ECAL) and hadron calorimeters (HCAL) are embedded }
within the solenoid. Each subdetector 1s divided into a barrel and two endcap g
sections. The ECAL is a highly granular array of 40 layers of silicon sensors and
tungsten plates. The HCAL is built from 60 layers of plastic scintillator tiles,

read out by silicon photomultipliers, and steel absorber plates.
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MLPF approach
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MLPF model #1: GNN

e The first model we study uses a dynamically learned graph structurel'], but avoids
a full quadratic allocation or computation by using a learnable binning(2. 3!

One layer of learnable graph building with locality sensitive hashing and message passing
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put ooon ansformed
feature vectors 1| [] H B feature vectors
B B “mm .IIX B
3 [&] E]
& E £
E Learnable E Sorting E Learned 4 | Message B 7 Reverse E
locality-sensitive by bin B all-to-all structure passing in .= sorting to
E hashing into bins 7 index |3 In each bin g. each bin .=.. E original order E
10 10 10
(5] HEN ]
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[1] https:/arxiv.org/abs/2101.08578 [2] https:/arxiv.org/abs/2203.00330 [3] https:/arxiv.org/abs/2303.17657
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MLPF model #2: Transformer

e The second model we study is a transformer (TF) in which the softmax self-attention
layer is approximated using fast attention via positive orthogonal random featuresl'!

One layer of kernel-based self attention with the FAVOR mechanism.
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[1] K. Choromanski et al., “Rethinking attention with performers”, 2020
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Results

e An extensive hyperparameter optimization (HPO) was performed for both models
using the JURECA supercomputert™.
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The optimized version of the GNN significantly outpertorms the transtormer,

although both use a similar number of trainable parameters (=5 x 100)
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We use ZH, WW and TTbar PU10 events to evaluate out-of-distribution
physics performance
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Hit-based MLPF

e To test the computational scalability of the approach, and to study the physics
performance using lower-level inputs

> Input for cluster-based MLPF ~ O(102) tracks or calorimeter clusters per event

> Input for hit-based MLPF ~ O(104) tracks or calorimeter hits per event
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Hit-based MLPF

e To test the computational scalability of the approach, and to study the physics
performance using lower-level inputs

> Input for cluster-based MLPF ~ O(102) tracks or calorimeter clusters per event

> Input for hit-based MLPF ~ O(104) tracks or calorimeter hits per event

Comparable performance
to baseline PF

Note: not using an optimized set of
hyperparameters, and not training for
a sufficient number of epochs —both
limited by computational throughput
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Scalability

e The training scalability is tested on three different HPC centers with different
accelerator hardware: Nvidia H100 GPUsI'l AMD MI250 GPUsI2l and Intel Habana

Gaudi HPUsl3!
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[1] Flatiron Institute, “CoreSite Cluster” [2] LUMI Consortium, “LUMI Supercomputer” [3] Voyager supercomputer: https:/dl.acm.org/doi/10.1145/3560051.3597507
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Summary

e We develop state-of-the-art, efficient and scalable, Al models to reconstruct events at the LHC
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Summary

e We develop state-of-the-art, efficient and scalable, Al models to reconstruct events at the LHC

e We test the models on different collider datasets - lately a multi-terabyte dataset of high-
energy e"e” collisions at future colliders!]

e \We optimize the model tor scalability for efficient event reconstruction at the high luminosity era

e \We demonstrate the model's portability on several different hardware accelerators

 Next steps include

> Further optimization of the inference on CPU/GPU in CMSSW

> Exploring self-supervised learning techniques to leverage the power of the gigantic
unlabelled data gathered by the LHC

[1] Dataset developed following the findable, accessible, interoperable, and reusable (FAIR) principles: https:/zenodo.org/record/8260741
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Thank you!

Datasets and software to reproduce the studies are published following the FAIR principles
1. The datasets are available in https://zenodo.org/record/8260741
2. The results in https://zenodo.org/record/8328683

3. The software used for analysis in https://zenodo.org/record/8290119
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CMS status (continued)

e MLPF is integrated with CMSSW since ~2 years

and can be enabled with a flag to switch out
standard PF as a testbed!"!

[1] https:/github.com/cms-sw/cmssw/pull/36841
[2] cms-data/RecoParticleFlow-PFProducer

'

class MLPFProducer : public edm::stream::EDProducer<edm: :GlobalCache<ONNXRuntime>> {
public:

explicit MLPFProducer(const edm::ParameterSet&, const ONNXRuntimex);

void produce(edm::Event& event, const edm::EventSetup& setup) override;
static void fillDescriptions(edm::ConfigurationDescriptionsé& descriptions);

// static methods for handling the global cache
static std::unique_ptr<ONNXRuntime> initializeGlobalCache(const edm::ParameterSet&);
static void globalEndJlob(const ONNXRuntimesx) ;

private:

};

const edm::EDPutTokenT<reco::PFCandidateCollection> pfCandidatesPutToken_;
const edm::EDGetTokenT<reco::PFBlockCollection> inputTagBlocks_;

» 865
TTbar_14TeV+2021PU_mipf

» 866 o

v 867 11834.13
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CMS status (continued)

* MLPF is integrated with CMSSW since ~2 years o class MPFProducer ¢ public edassstreonsEDPraducer<edn: 6lobolCache ARG Ciness
aﬂd Can be enabled Wlth a ﬂag to SWitCh out i: pu:;i:icit MLPFProducer(const edm::ParameterSet&, const ONNXRuntimes);
sta nda rd PF as a teStbed“] ii void produce(edm: :Event& event, const edm::EventSetup& setup) override;
22 static void fillDescriptions(edm::ConfigurationDescriptionsé& descriptions);
] . iz // static methods for handling the global cache
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[1] https:/github.com/cms-sw/cmssw/pull/36841
[2] cms-data/RecoParticleFlow-PFProducer
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CMS status (continued)
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CMS status (continued)

e MLPF is integrated with CMSSW since ~2 years
and can be enabled with a flag to switch out

standard PF as a testbed!’

]

e Running in RelVals as 11834.13 / _mlpf

* We now need to provide an updated weight filel2]
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[1] https:/github.com/cms-sw/cmssw/pull/36841
[2] cms-data/RecoParticleFlow-PFProducer

one later as a refactor

17 ~ class MLPFProducer : public edm::stream::EDProducer<edm: :GlobalCache<ONNXRuntime>> {

18
19
20
21
22
23
24
25
26
27
28
29
30
31

public:
explicit MLPFProducer(const edm::ParameterSet&, const ONNXRuntimex);

void produce(edm::Event& event, const edm::EventSetup& setup) override;
static void fillDescriptions(edm::ConfigurationDescriptionsé& descriptions);

// static methods for handling the global cache

static std::unique_ ptr<ONNXRuntime> initializeGlobalCache(const edm::ParameterSetd);

static void globalEndJob(const ONNXRuntimesx);

private:
const edm::EDPutTokenT<reco::PFCandidateCollection> pfCandidatesPutToken_;
const edm::EDGetTokenT<reco::PFBlockCollection> inputTagBlocks_;

};

» 865
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CMS truth definitionl!]

2. Particle-level training target definition

The MLPF training target is based on detector simulation information to closely approximate
the input the simulation receives from the generator. The truth particles for MLPF are the root
nodes of the GEANT4 simulation tree, consisting of simulated particle decays and interactions
with matter, defined via the following truth definition algorithm.

The truth algorithm takes as input the tree of GEANTA4 simulation particles, searches for
the earliest particles whose children leave detectable hits in either the tracker or calorimeters®.
Given these decay tree root particles, we first address double-counting by removing the particles
that have overlapping GEANT4 simulation track identifiers.

Now knowing the set of root sirnulation particles whose decay products in principle interact
with the detector, we have to define which of those we wish to reconstruct as PF particles, and
with which granularity. The simulation particles are cleaned as follows:

(i) Coalesce particle labels according to PF granularity: any charged hadrons are assigned to
a single charged hadron class, all neutral hadrons are assigned to a single neutral hadron
class, etc.

(ii) Geometrically overlapping particles that leave energy deposits only to the same calorimeter
cluster are not reconstructable separately, and are thus merged. keeping the label of the
highest-energy particle.

(iii) Electrons or muons with pp < 1 GeV are relabeled as charged or neutral hadrons, based on

the deposited track and calorimeter energy, to approximate the behaviour of the baseline
PF algorithm.

(iv) to mimic the response of baseline PF, particles outside the tracker acceptance are labeled
as HF hadronic or HF electromagnetic, depending on the energy deposits to the respective
calorimeters

[1] https:/arxiv.org/abs/2303.17657
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More information on the code

@ particleflow rubic @©Watch 4 ~ Y Fork 26~ Starred 19~
¥ main ~ P 6 branches © 6tags Go to file Add file ~ About

Machine-learned, GPU-accelerated

@ irata up (#200)

v 58001fa 16 hours ago & 945 commits

particle flow reconstruction

B _githubjworkflows switch to tfds array_record, improve visualization, dataset descripti... 2 weeks ago (0 Readme
5 Apache-2.0 license
B apptainer switch to tfds array_record, improve visualization, dataset descripti... 2 weeks ago
A Activity
B habana update habana reqs for new tensorflow datasets (#194) last week ¢ 19 stars
B images fix keynotes (#199) 2 days ago ® 4 watching
B mipf Optimize and cache data steps counter (#197) yesterday ¥ 26 forks
Report repository
B models up (#200) 16 hours ago
B notebooks up (#200) 16 hours ago
Releases 4
B  parameters Optimize and cache data steps counter (#197) yesterday
) Baseline MLPF model for CMS [ Latest
B scripts Optimize and cache data steps counter (#197) yesterday on Sep 22, 2021
D gitignore switch to tids array_record, improve visualization, dataset descripti... 2 weeks ago + 3 releases
D .gitmodules integrate hep_tfds, September 2022 benchmark training (#136) last year
D pre-commit-config.yaml switch to tfds array_record, improve visualization, dataset descripti... 2 weeks ago Packages
[% LICENSE add license (Apache 2.0) (#86) 2 years ago No packages published
[ README.md clean up repo (#188) last month
[ README_tf.md update README (#175) 6 months ago Contributors 8
D requirements.txt switch to tfds array_record, improve visualization, dataset descripti... 2 weeks ago ' Jll' 0 -" - g s
‘= README.md ‘

Languages

. I
OverV|eW ® Jupyter Notebook 71.9%
® Python 22.8% o Shell 36%
Tel 0.68% ® C++06%

MLPF focuses on developing full event reconstruction based on computationally scalable and flexible end-to-end Baichille 0.3%
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[1] https:/github.com/jpata/particleflow
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More information on the Transformer modell!l

The alternative kernel-based transformer model avoids quadratic scaling using the
following approach. For N elements, given queries Q € RY*% and keys K € RV *%
the attention mechanism encodes a value matrix V' € RY*dv ag

Attn(Q, K, V) = softmax (C:)/Ii_:) V. (2)

Here, the softmax(QKT) operation creates a full Nx N matrix. As in Ref. [27], we
define a transformation %(x) — x’ that transforms an input feature map x using
predetermined random projections to a new feature space x’. For a sufficiently large
number of random projections, attention can be approximated as

Attn(Q, K, V) ~ Q'(K'TV) (3)

where ' and K’ arc the query and key matrices after the random feature mapping
2, respectively. Allocation of the entire N x/N matrix is avoided, since the order of
opcrations is changed to first multiply keys with values and then subsequently with
querics. In the special case of seclf-attention, @@, K, and V' are all derived from X
through a linear layer, and the self-attention mechanism can be seen as an analogy
to graph building and message passing. A visual overview of the supervised learning

2.1 PRELIMINARIES - REGULAR ATTENTION MECHANISM

Let L be the size of an input sequence of tokens. Then regular dot-product attention (Vaswani et al.,
2017) is a mapping which accepts matrices Q, K, V € R“*? as input where d is the hidden dimension
(dimension of the latent representation). Matrices Q, K, V are intermediate representations of the
input and their rows can be interpreted as queries, keys and values of the continuous dictionary data
structure respectively. Bidirectional (or non-directional (Devlin et al., 2018)) dot-product attention
has the following form, where A € R is the so-called attention matrix:

Att,,(Q, K, V) =D 'AV, A =exp(QK'/Vd), D =diag(Aly.). (1)

Here exp(-) is applied elementwise, 1, is the all-ones vector of length L, and diag(-) is a diagonal
matrix with the input vector as the diagonal. Time and space complexity of computing (1) are O(L?d)
and O(L? + Ld) respectively, because A has to be stored explicitly. Hence, in principle, dot-product
attention of type (1) is incompatible with end-to-end processing of long sequences. Bidirectional
attention is applied in encoder self-attention and encoder-decoder attention in Seq2Seq architectures.

[1] K. Choromanski et al., “Rethinking attention with performers”, 2020

2.2 GENERALIZED KERNELIZABLE ATTENTION

FAVOR+ works for attention blocks using matrices A € RE*% of the form A (i, ) = K(q, , ij),

with q;/k; standing for the i /*" query/key row-vector in Q/K and kernel K : RY x R? — R,
defined for the (usually randomized) mapping: ¢ : R? — R, (for some r > 0) as:

K(x,y) = E[p(x) " o(y))- (3)

We call ¢(u) a random feature map for u € R%. For Q', K’ € RE*" with rows given as ¢(q, )"
and ¢(k; )" respectively, Equation 3 leads directly to the efficient attention mechanism of the form:

Atto(QK,V) =D 1 (Q((K')"V)), D =diag(Q'((K')"1z)). @)

Here m stands for the approximate attention and brackets indicate the order of computations. It is
easy to see that such a mechanism is characterized by space complexity O(Lr + Ld + rd) and time

complexity O(Lrd) as opposed to O(L? + Ld) and O(L?d) of the regular attention (see also Fig. 1).

- T ————————————————— - T ———

/e O(L*d) CO(Lrd) 57 T Xy
: Aok 4 |
| f==1" : = |
| Lix-L 83Lxd:[:’:l-r"l‘ 83: rx-+L €3L><d E
I I : : :
: L NI I !
: ool (KD /|
: L : |
\ A attention mechanism V /! \\\ Q, \\\ _________________ Y_ - ’,/"

_______________________________________________________

Figure 1: Approximation of the regular attention mechanism AV (before D ~'-renormalization) via (random)
feature maps. Dashed-blocks indicate order of computation with corresponding time complexities attached.
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More information on the supercomputerst!-3]

computer [48]. The LUMI supercomputer features GPU nodes with 64-core AMD
Trento CPUs and four AMD MI250X cards, each card consisting of two accelerator
chips. Voyager is an NSF-funded supercomputer with 42 first-generation Intel Habana
Gaudi (training) nodes, each with eight cards, two first-generation Intel Habana Goya
(inference) nodes, a 400 GbE Arista switch, and 3PB of Ceph file system available
at the San Diego Supercomputer Center located at the University of California San
Diego. For the training tests, there are some differences in the configuration on the
HPCs. For the AMD processors, multi-card training was implemented with a mirrored
worker configuration, while for the Nvidia and Habana processors, Horovod [49] was
used. Events were zero-padded to a regular size of 512 elements per events. A batch
size of 250 events per device was used for the Nvidia and AMD processors, while a
batch size of 100 per device was used for the Habana processors. We observe nearly
linear scaling or better for all processors. The improved scaling for the Habana pro-
cessors can be explained by the all-to-all non-blocking intra-node network connection,
where cach processor has a 100 Gb network connection to every other processor [48].

Fig. 6 Relative timing of the baseline PF (left) and MLPF algorithms (middle), illustrating the

scaling with respect to input particle or element (track, cluster, or hit) multiplicity. We also demon-

strate the scaling of the training performance across multiple devices on a single machine (right) on

Nvidia, AMD, and Habana processor cards from the CoreSite, LUMI, and Voyager supercomputers, >
respectively. For the multi-device scaling test, Horovod was used on CoreSite and Voyager, while

the TENSORFLOW MirroredStrategy was used on LUMI. The batch size was adjusted to fit a single

device and the dataset was fully cached in RAM.

1] Flatiron Institute, “CoreSite Cluster”, 2023
2] LUMI Consortium, “LUMI Supercomputer”, 2023

3] Voyager supercomputer: https:/dl.acm.org/doi/10.11 60Q051.
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More information on Horovod!!l

Training modern deep learning models requires large amounts of computation,
often provided by GPUs. Scaling computation from one GPU to many can enable
much faster training and research progress but entails two complications. First,
the training library must support inter-GPU communication. Depending on the
particular methods employed, this communication may entail anywhere from
negligible to significant overhead. Second, the user must modify his or her training
code to take advantage of inter-GPU communication. Depending on the training
library’s API, the modification required may be either significant or minimal.

Existing methods for enabling multi-GPU training under the TensorFlow library
entail non-negligible communication overhead and require users to heavily mod-
ify their model-building code, leading many researchers to avoid the whole
mess and stick with slower single-GPU training. In this paper we introduce
Horovod, an open source library that improves on both obstructions to scaling:
it employs efficient inter-GPU communication via ring reduction and requires
only a few lines of modification to user code, enabling faster, easier distributed
training in TensorFlow. Horovod is available under the Apache 2.0 license at
https://github.com/uber/horovod.

[1] https:/arxiv.org/pdf/1802.05799.pdf
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