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Event reconstruction
• The Particle Flow algorithm reconstructs particles 

from tracks and calorimeter energy clusters

Different particles interact differently with the detector subsystems

• We develop ML Particle Flow (MLPF): 
a graph neural network that is highly 
scalable and efficient at reconstruction

Events are getting busier with higher luminosity and 
possibly in need for scalable AI-driven algorithms



• Belayneh, D., Carminati, F., Farbin, A. et al. Calorimetry with deep learning: particle simulation and reconstruction for collider physics. Eur. Phys. J. C 
80, 688 (2020). https://doi.org/10.1140/epjc/s10052-020-8251-9


• Jan Kieseler, Object condensation: one-stage grid-free multi-object reconstruction in physics detectors, graph, and image data. Eur. Phys. J. C 80, 
886 (2020). https://doi.org/10.1140/epjc/s10052-020-08461-2


• Saptaparna Bhattacharya, Nadezda Chernyavskaya, Saranya Ghosh, Lindsey Gray, Jan Kieseler et al. GNN-based end-to-end reconstruction in the 
CMS Phase 2 High-Granularity Calorimeter. ACAT 2021. https://doi.org/10.48550/arXiv.2203.01189


• Shah Rukh Qasim, Nadezda Chernyavskaya, Jan Kieseler, Kenneth Long, Oleksandr Viazlo et al. End-to-end multi-particle reconstruction in high 
occupancy imaging calorimeters with graph neural networks. https://doi.org/10.48550/arXiv.2204.01681


• Di Bello, F.A., Ganguly, S., Gross, E. et al. Towards a computer vision particle flow. Eur. Phys. J. C 81, 107 (2021). https://doi.org/10.1140/epjc/
s10052-021-08897-0


• Joosep Pata, Javier Duarte, Jean-Roch Vlimant, Maurizio Pierini & Maria Spiropulu. MLPF: efficient machine-learned particle-flow 
reconstruction using graph neural networks. Eur. Phys. J. C 81, 381 (2021). https://doi.org/10.1140/epjc/s10052-021-09158-w  

• Joosep Pata, Javier Duarte, FM, Eric Wulff, Jieun Yoo, Jean-Roch Vlimant, Maurizio Pierini, Maria Girone. Machine Learning for Particle 
Flow Reconstruction at CMS. ACAT 2021. https://doi.org/10.48550/arXiv.2203.00330, http://cds.cern.ch/record/2792320 

• FM, Raghav Kansal, Daniel Diaz, JD, Joosep Pata, Maurizio Pierini, Jean-Roch Vlimant. Explaining machine-learned particle-flow 
reconstruction. Machine Learning for Physical Sciences NeurIPS 2021 workshop. https://arxiv.org/abs/2111.12840 

• Francesco Armando Di Bello, Etienne Dreyer, Sanmay Ganguly, Eilam Gross, Lukas Heinrich, Anna Ivina, Marumi Kado, Nilotpal Kakati, Lorenzo 
Santi, Jonathan Shlomi, Matteo Tusoni, Reconstructing particles in jets using set transformer and hypergraph prediction networks. https://arxiv.org/
abs/2212.01328 


• FM, Joosep Pata, Javier Duarte, Eric Wulff, Dylan Rankin, Maurizio Pierini, Jean-Roch Vlimant. Progress towards an improved particle flow 
algorithm at CMS with machine learning. ACAT 2022 and ML4Jets 2022. https://arxiv.org/abs/2303.17657, http://cds.cern.ch/record/2842375  

• Joosep Pata, Eric Wulff, FM, David Southwick, Mengke Zhang, Maria Girone, JD. Scalable neural network models and terascale datasets 
for particle-flow reconstruction. ML4Jets 2023. https://arxiv.org/abs/2309.06782

ML-based reconstruction is an active area of research. In the interest of time, 
I will focus on the recent MLPF developments that I’m more familiar with.
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MLPF in CMS

1

The last CMS results were published 
and presented in ACAT 2022[1]

[1] https://arxiv.org/abs/2303.17657 [2] https://github.com/cms-sw/cmssw/pull/36841

https://arxiv.org/abs/2303.17657
https://github.com/cms-sw/cmssw/pull/36841
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MLPF in CMS

• MLPF is currently integrated in CMSSW and can be enabled with a flag to switch out standard 
PF as a testbed[2]

• But why MLPF? Scalability and portability!

1

MLPF shows comparable 
event-level reconstruction 

to native PF

The last CMS results were published 
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Latest developments

• Performed studies on a newly developed multi-terabyte dataset of high-energy  collision 
simulated with GEANT4 and stored in EDM4HEP format[1]

e+e−

[1] https://zenodo.org/record/8260741
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Latest developments

• Performed studies on a newly developed multi-terabyte dataset of high-energy  collision 
simulated with GEANT4 and stored in EDM4HEP format[1]

e+e−

• Developed state-of-the-art ML models that exceed the current physics performance of the 
baseline PF

• Studied the models extensively on several supercomputers with different accelerator chip 
architectures

• Studied the models also on a highly granular dataset composed directly of tracks and 
calorimeter hits

[1] https://zenodo.org/record/8260741

Now on arXiv:2309.06782 

https://zenodo.org/record/8260741
https://arxiv.org/abs/2309.06782
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Compact Linear Collider (CLIC)

• CLIC dataset is an open dataset of collision events at a center of mass energy 
 with full GEANT4 simulation available in the EDM4HEP format

e+e−

s = 380GeV

The CLIC detector model is based on the CMS detector at CERN. It features 
a superconducting solenoid with an internal diameter of 7 m, providing a 
magnetic field of 4 T in the center of the detector. Silicon pixel and strip trackers, 
the electromagnetic (ECAL) and hadron calorimeters (HCAL) are embedded 
within the solenoid. Each subdetector is divided into a barrel and two endcap 
sections. The ECAL is a highly granular array of 40 layers of silicon sensors and 
tungsten plates. The HCAL is built from 60 layers of plastic scintillator tiles, 
read out by silicon photomultipliers, and steel absorber plates. 
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MLPF approach

1

Graph 
building

Message 
passing

Event as input set

X = {xi}

Event as graph

X = {xi}, A = Aij

Transformed inputs

H = {hi}

Target set Y = {yj}

!(X, A |w) = Hℱ(X |w) = A

elementwise 
FFN

#(xj, hj |w) = y′ j

Output set Y′ = {y′ j}

Elementwise loss 

classification & regression

L(yj, y′ j)








Trainable neural networks: 


 - track,  - calorimeter cluster,  - encoded element

 - target (predicted) particle,  - no target (predicted) particle

xi = [type, pT, EECAL, EHCAL, η, ϕ, ηouter, ϕouter, q, …], type ∈ {track, cluster}
yj = [PID, pT, E, η, ϕ, q, …], PID ∈ {none, charged hadron, neutral hadron, γ, e±, μ±}

hi ∈ ℝ256

ℱ, !, #
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xi = [type, pT, EECAL, EHCAL, η, ϕ, ηouter, ϕouter, q, …], type ∈ {track, cluster}
yj = [PID, pT, E, η, ϕ, q, …], PID ∈ {none, charged hadron, neutral hadron, γ, e±, μ±}

hi ∈ ℝ256

ℱ, !, #

1. Must avoid quadratic 
scaling!

2. Must reconstruct 
physics objects 

(e.g. Jets)!
We study two alternative 

models
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MLPF model #1: GNN

• The first model we study uses a dynamically learned graph structure[1], but avoids 
a full quadratic allocation or computation by using a learnable binning[2, 3]
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[1] https://arxiv.org/abs/2101.08578 [2] https://arxiv.org/abs/2203.00330 [3] https://arxiv.org/abs/2303.17657

https://arxiv.org/abs/2101.08578
https://arxiv.org/abs/2203.00330
https://arxiv.org/abs/2303.17657


11

MLPF model #2: Transformer

• The second model we study is a transformer (TF) in which the softmax self-attention 
layer is approximated using fast attention via positive orthogonal random features[1]

Random 
projections

Learnable 
weights

WQ,K,V ∈ ℝF×D C ∈ ℝD×M

Q′ ∈ ℝN×M K′ T ∈ ℝM×NQ, K, V ∈ ℝN×D V ∈ ℝN×DX ∈ ℝN×F

Input  
feature vectors

Queries, keys, 
values

××

Transformed 
feature vectors

=

%(NMD)%(NMD)

K′ TV ∈ ℝM×D X′ = Q′ (K′ TV) ∈ ℝN×D

One layer of kernel-based self attention with the FAVOR mechanism.

[1] K. Choromanski et al., “Rethinking attention with performers”, 2020

https://arxiv.org/pdf/2009.14794.pdf
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Results

• An extensive hyperparameter optimization (HPO) was performed for both models 
using the JURECA supercomputer[1]

[1] JURECA is a pre-exascale modular supercomputer operated by Jülich Supercomputing Centre at Forschungszentrum Jülich

https://jlsrf.org/index.php/lsf/article/view/182
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Results

• An extensive hyperparameter optimization (HPO) was performed for both models 
using the JURECA supercomputer[1]

[1] JURECA is a pre-exascale modular supercomputer operated by Jülich Supercomputing Centre at Forschungszentrum Jülich

The optimized version of the GNN significantly outperforms the transformer, 
although both use a similar number of trainable parameters (≃5 × 106) 

https://jlsrf.org/index.php/lsf/article/view/182
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We use ZH, WW and TTbar PU10 events to evaluate out-of-distribution 
physics performance

MLPF shows better 
performance compared to the 

baseline PF
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Hit-based MLPF

• To test the computational scalability of the approach, and to study the physics 
performance using lower-level inputs


Input for cluster-based MLPF ~ O(102) tracks or calorimeter clusters per event
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Hit-based MLPF

• To test the computational scalability of the approach, and to study the physics 
performance using lower-level inputs


Input for cluster-based MLPF ~ O(102) tracks or calorimeter clusters per event


Input for hit-based MLPF ~ O(104) tracks or calorimeter hits per event

Note: not using an optimized set of 
hyperparameters, and not training for 
a sufficient number of epochs—both 
limited by computational throughput

Comparable performance 
to baseline PF



15

Scalability

[1] Flatiron Institute, “CoreSite Cluster” [2] LUMI Consortium, “LUMI Supercomputer” [3] Voyager supercomputer: https://dl.acm.org/doi/10.1145/3569951.3597597

• The training scalability is tested on three different HPC centers with different 
accelerator hardware: Nvidia H100 GPUs[1], AMD MI250 GPUs[2], and Intel Habana 
Gaudi HPUs[3]

GNN-based model inference time 
scales approximately linearly with 

increasing input size

https://dl.acm.org/doi/10.1145/3569951.3597597
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PF baseline scales non-linearily 
with increasing input size
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Summary
• We develop state-of-the-art, efficient and scalable, AI models to reconstruct events at the LHC

• We test the models on different collider datasets - lately a multi-terabyte dataset of high-
energy  collisions at future colliders[1]e+e−

• We optimize the model for scalability for efficient event reconstruction at the high luminosity era

• We demonstrate the model's portability on several different hardware accelerators

• Next steps include

Further optimization of the inference on CPU/GPU in CMSSW

Exploring self-supervised learning techniques to leverage the power of the gigantic 
unlabelled data gathered by the LHC

[1] Dataset developed following the findable, accessible, interoperable, and reusable (FAIR) principles: https://zenodo.org/record/8260741

https://zenodo.org/record/8260741
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Thank you!

Datasets and software to reproduce the studies are published following the FAIR principles 


1. The datasets are available in https://zenodo.org/record/8260741


2. The results in https://zenodo.org/record/8328683


3. The software used for analysis in https://zenodo.org/record/8290119

https://zenodo.org/record/8260741
https://zenodo.org/record/8328683
https://zenodo.org/record/8290119
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CMS status (continued)
• MLPF is integrated with CMSSW since ~2 years 

and can be enabled with a flag to switch out 
standard PF as a testbed[1]

[1] https://github.com/cms-sw/cmssw/pull/36841

[2] cms-data/RecoParticleFlow-PFProducer

https://github.com/cms-sw/cmssw/pull/36841
https://github.com/cms-data/RecoParticleFlow-PFProducer/blob/master/mlpf/mlpf_2021_11_16__no_einsum__all_data_cms-best-of-asha-scikit_20211026_042043_178263.workergpu010.onnx
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CMS status (continued)
• MLPF is integrated with CMSSW since ~2 years 

and can be enabled with a flag to switch out 
standard PF as a testbed[1]

• Running in RelVals as 11834.13 / _mlpf

• We now need to provide an updated weight file[2] 
that improves physics performance sufficiently

• This will be followed by optimizing the inference 
time on CPU & GPU in CMSSW by quantization 
and sparsification

• The input features, tests and inference have to be 
modernized, but can be done later as a refactor

[1] https://github.com/cms-sw/cmssw/pull/36841

[2] cms-data/RecoParticleFlow-PFProducer

https://github.com/cms-sw/cmssw/pull/36841
https://github.com/cms-data/RecoParticleFlow-PFProducer/blob/master/mlpf/mlpf_2021_11_16__no_einsum__all_data_cms-best-of-asha-scikit_20211026_042043_178263.workergpu010.onnx


reconstructed 
particles

simulation input 
particles

decay 
products

detector hits

clusters of 
hits

Simulation 
model

Reconstruction 
model

20

CMS truth definition[1]

[1] https://arxiv.org/abs/2303.17657

https://arxiv.org/abs/2303.17657
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More information on the code[1]

[1] https://github.com/jpata/particleflow

https://github.com/jpata/particleflow
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More information on the Transformer model[1]

[1] K. Choromanski et al., “Rethinking attention with performers”, 2020

https://arxiv.org/pdf/2009.14794.pdf
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More information on the supercomputers[1-3]

[1] Flatiron Institute, “CoreSite Cluster”, 2023

[2] LUMI Consortium, “LUMI Supercomputer”, 2023

[3] Voyager supercomputer: https://dl.acm.org/doi/10.1145/3569951.3597597

https://dl.acm.org/doi/10.1145/3569951.3597597
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More information on the supercomputers[1-3]

[1] Flatiron Institute, “CoreSite Cluster”, 2023

[2] LUMI Consortium, “LUMI Supercomputer”, 2023

[3] Voyager supercomputer: https://dl.acm.org/doi/10.1145/3569951.3597597

Training information

https://dl.acm.org/doi/10.1145/3569951.3597597
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More information on Horovod[1]

[1] https://arxiv.org/pdf/1802.05799.pdf

https://arxiv.org/pdf/1802.05799.pdf

