A Python Package for Time
Series Event Detection

é Event D\e'fector

Menouar Azib

Benjamin Renard, Philippe Garnier, Vincent Génot, Nicolas André, Myriam Bouchemit

N Plan de UNIVERSITE = l ra
&lAi(iég relance TOULOUSE ||| CDPF‘

oooooooooooooooooooooooooo

N~<0D1S




Outline

Introduction

Review of Existing Literature
Method

Python Package

Usage Examples

. Conclusion



1. Event Detection in Time Series

e Identifying significant occurrences (events) within time-ordered data (time series)
o Change Point Detection

e Events:
o Anomalies

o Scientific Events \\
o Frauds LN : ; | : : : ! . . . I i
o ... ] \ i

Features

T T T T I T T T T I T T
20:00 21:00 22:00 23:00



2. Review of Existing Literature

Supervised Machine Learning Methods

e A Common Approach: Treating Event Detection as Binary Classification.

e Each time step is labeled as either 0 (non event) or 1 (event).

Feature 1 Feature 2 Feature 3 Event Label

2023-09-20 07:29:14.123456789 1 4 7 0
2023-09-20 07:29:14.987654321 2 5 8 1
2023-09-20 07:29:15.192837465 3 6 9 0

e Methods include Random Forest, Neural Networks, Naive Bayes, Logistic Regression, SVM, ...

e Review: https://doi.org/10.1007/s10115-016-0987-z



https://doi.org/10.1007/s10115-016-0987-z

3. Method

Combines 4 distinct features

Regression-Based Approach
o Prediction of continuous values # binary classification.

No Need for Time-Step Labeling
o No need for labeling each time step # time-consuming.
o Requires only reference (true) events to be defined as specific time points/intervals of time.

Start Time Stop Time
2023-01-01 00:00:00 2023-01-01 00:01:00
2023-01-01 00:02:00 2023-01-01 00:03:00
2023-01-01 00:04:00 2023-01-01 00:05:00

Stacked Ensemble Learning Meta-Model
o Leverages the strengths of multiple base models: robustness.

Practical Implementation
o Facilitates practical implementation: Python package.



3. Method

Data
We require two pieces of data:

o Time series (S) S:R—R
t— S(t)

o The list of reference events (E) £ =ler, ez, ]

= Time series (S)

4[‘____“
T

i |
T T - » T T T T T Y T T T T
13:00 14:00 15:00 6:00

Event e, Event e,




3. Method

Regression-Based Approach: Sliding Windows

T T T g T T T T T T
13:00 14:00 15:00 16:00

Time Series (S)



3. Method

Regression-Based Approach: Sliding Windows

1 step ;
1 5 b
mo :
— I C
[ r
1 [ [
. . [ .
Window of Data AN ; r
13'00 - Ea % 14]00 - y i ; 15‘00 : 16I00 - ‘
Event e,



3. Method

Reqgression-Based Approach: Overlapping Parameter (op)

duration(w; Ne,)

I |
I |
I |
| op(w;, e;) = :
N ’ duration(w; U e;)

T, T,

Sliding

Window w, ~ C/ente;



3. Method

Reqgression-Based Approach: Overlapping Parameter (op)

duration(w; Ne;)

! op(wi; €5) = duration(w; U e;)

T, T,

Sliding

Window w, ~ C/ente;

op=0 op="7?




3. Method

Reqgression-Based Approach: Overlapping Parameter (op)

duration(w; Ne;)

! op(wi, €5) = duration(w; U e,)

T, T,

Sliding

Window w, ~ C/ente;

1 1 n e l
op=0 lim n 1+; st i i

n—oo 2 :3




3. Method

Reqgression-Based Approach: Overlapping Parameter (op)

duration(w; Ne;)

! op(wi; €5) = duration(w; U e;)

T, T,
Sliding
Window w, ~ C/ente;
il T ! T il
L aE o L
o Ol 15 o
! ]! ! !
! ]! P! I :
- ] - 1 -_—
op=0 op=1/3 op=1 op=1/3 op=0

12



3. Method

Reqgression-Based Approach: Overlapping Parameter (op)

duration(w; Ne;)

! op(wi, €5) = duration(w; U e,)

T, T,
Sliding
Window w, ~ C/ente;
il T ! T il
L aE o L
o Ol 15 o
! ]! ! !
! ]! P! I :
- ] - 1 -_—
op=0 op=1/3 op=1 op=1/3 op=0

op(w;) = iné% op(wi, e;) 13
J



3. Method

Rearession-Based Approach: Peaks = Events

Event e,

Event e, Event e,

Event e,

windows

14



3. Method

Principle of Detection

Time Series

}———[ Sliding Windows |

[ Computing op

Events

|
[ Train a Model to predict op ]

|
| Peak Detection ]

|
| Predicted Events ]

windows

15



3. Method

Stacking Ensemble Learning

Model 1

Model 2 }

H

op predictions 1

H

op predictions 2

Model m

3

op predictions m

Training a Meta-model or Average predictions

Ll

Peak Detection

H

Predicted Events

LSTM

GRU

BiLSTM
CNN1D

FFN
ConvLSTM1D
Transformer

16



3. Method

In-Depth and Theoretical Discussion

Universal Event Detection in Time Series

Menouar Azib! MENOUAR.AZIBQAKKODIS.COM
Benjamin Renard! BENJAMIN.RENARD@AKKODIS.COM
Philippe Garnier? PHILIPPE.GARNIER@QIRAP.OMP.EU
Vincent Génot? VINCENT.GENOT@IRAP.OMP.EU
Nicolas André? NICOLAS.ANDRE@QIRAP.OMP.EU

1: Akkodis, Blagnac, France

2: Institut de Recherche en Astrophysique et Planétologie, CNRS, Université de Toulouse, CNES,

Toulouse, France

Abstract

Event detection in time series data is a crucial task spanning various domains, and extensive
research has explored methods to achieve this goal. These methods range from traditional
threshold-based techniques to more advanced deep learning approaches. However, a com-
prehensive survey of existing methods reveals that each approach has its limitations, often

Theorem 6 (The Universal Event Approximation Theorem) IfT andT~! are con-
tinuous, there exists a feedforward neural network u € X" (V) that utilizes a squashing func-
tion ¥ and can approzimate the function fo, from Y to [0, 1] with arbitrary precision, given
a sufficient number of hidden units Q. Here, X" (V) represents a set of single hidden layer
feedforward neural networks defined as follows:

Q
{v:R" > R:v(z) = Z‘ﬁj\I/(Aj(.T)),l‘ eR",B;eR,Aje AT}
j=1

where Aj(z) = wj - x + bj, with w; € R" and b; € R. The parameters w;,b;, and B;
correspond to the network weights.

Preprint https://doi.org/10.31219/0sf.io/uabjg

Submitted to JVIR

17


https://doi.org/10.31219/osf.io/uabjg

4. Python Package

EventDetector:
o Github: https://qgithub.com/menouarazib/eventdetector/
o PyPl: pip install eventdetector-ts
o Python 3.9+
o TensorFlow: Already installed

@ Even(l}e"rec’ror

Python 3.9 | 3.10 | pypi W2.0:8 | ©) Tests and Lint |passing| coverage [67% | license [MER] Dol 10.31219/0stio/uabig

Universal Event Detection in Time Series

Table of Contents

¢ Introduction

¢ Installation

o Quickstart

* Make Prediction
* Documentation

« How to credit our package

18


https://github.com/menouarazib/eventdetector/

4. Python Package

le Evenﬁ}éfecfor

import pandas as pd
from typing import Union

# Time Series

dataset: pd.DataFrame

# Reference Events

events: Union[list, pd.DataFrame]

from eventdetector_ts.metamodel.meta_model import MetaModel

meta_model = MetaModel (dataset=, events=, width=,
— width_events=, step=, output_dir=)

meta_model.fit ()

19



5. Usage Examples

Planetary Science: Martian Bow Shock

Martian bow shock is occured when the
— supersonic  solar wind interacts with the
U Martian environment, leading to the formation
of a shock wave.

Bow Shoek

Escape

20



5. Usage Examples

Planetary Science: Martian Bow Shock

Martian bow shock is occured when the
supersonic solar wind interacts with the
Martian environment, leading to the formation
of a shock wave.

Solar Wind

Bow Shoek

11820 shock crossings by the Mars express

spacecraft:
https://doi.org/10.1016/B978-012086430-0/5001

0-5

21


https://doi.org/10.1016/B978-012086430-0/50010-5
https://doi.org/10.1016/B978-012086430-0/50010-5

5. Usage Examples

Planetary Science: Martian Bow Shock

The dataset represents a time series with a time sampling of 4 second: electron counts, ....

I 1 1 1 ! 1 1 1 1 1 1 1 1

1

1 1 I 1 1

Electron counts

2.0¢°

o

o

L]
llllllllllllllllllllll

S0 B S e L e e L S Be et o b R R B )

The French national data centre for natural
plasmas of the solar system.
http://cdpp.irap.omp.eu/

An on-line database and analysis tool for
heliospheric and planetary plasma data.
http://amda.cdpp.eu/

22


http://cdpp.irap.omp.eu/
http://amda.cdpp.eu/

5. Usage Examples

Financial Security: Credit Card Fraud

e The dataset represents a time series with a time sampling of 1 second,

Credit Card comprising 492 frauds (events) out of 284,807 transactions.

Fraud
Detection https://www.doi.ora/10.1016/j.eswa.2014.02.026

from eventdetector_ts import load_martian_bow_shock
from eventdetector_ts.metamodel.meta_model import MetaModel

dataset, events = load_martian_bow_shock()

meta_model = MetaModel (dataset=dataset, events=events,
— width=45, step=1, output_dir="bow_shocks")

meta_model.fit()

from eventdetector_ts import load_credit_card_fraud
from eventdetector_ts.metamodel.meta_model import MetaModel

dataset, events = load_credit_card_fraud()

meta_model = MetaModel (dataset=dataset, events=events,
- width=3, step=1, output_dir='credit_card_fraud')

meta_model.fit()

23



5.1. Losses + op Predictions

(1) Training and Validation Losses (2) Training and Validation Losses
0.008 4 Training Loss - FFN_0 0.164 Training Loss - FFN_0
Validation Loss - FFN_0 ’ Validation Loss - FFN_0
Training Loss - FFN_1 Training Loss - FFN_1
0.007 4 Validation Loss - FFN_1 0.144 Validation Loss - FFN_1
0.124
0.006
0.10
@ &
q 0.08
3 0,005 1 3
0.06
0008 0.04
0.02 A
0.003
0.00
T T T T T T T T T T
0 10 20 30 40 0 20 40 60 80
Epochs Epochs
(1) True Op vs Predicted Op (2) True Op vs Predicted Op
109 — Trueop 1.0 4 —— True Op
—— Predicted Op —— Predicted Op
0:8 0.8
0.6 0.6
Qo j=3
o o
0.4+ 0.4
0.2 4 0.2
0.0 0.0 | T nooae
T T T T T T T T T T T
570000 580000 590000 600000 610000 32000 33000 34000 35000 36000 37000

Windows Windows



True Events

5.2 Optimization

[ Test IData ]
§ ! ¥

s IE—— s |

; ; ;

op predictions 1 op predictions 2 op predictions m

| | |
)

Training a Meta-model or Average predictions

H

o, M —» Gaussian filter (g,m)
h |— Peaks detection (h)

H

Predicted Events

—@®

Max F1-Score 25




True Events

True Shocks
Electron counts
w

o4

A

[«]

)
w

N
0
0
| NN AR

J

TTT T T[T T T rrrrrr?

-

- - -

Fitered Predicted op

-

llllllllllllllllllllllll

AR RN RRERE RRRR

o

Mar 2012

o, m

1s:00

1900
Time. UT

<

Gaussian filter (o,m)

L*

Peaks detection (h)

L+

Predicted Events

—@®

Max F1-Score

20l00

Created by AMDA v3.6.7 27/09/2023 11:32

26



5.3 Results

Data set F1-Score Precision Recall
Martian bow shock = 0.9021 0.9455 0.8626
Credit card fraud 0.8372 0.9643 0.7397

Literature f1 scores:
o Bow shock
m f1 scores: [0.90, 0.92]
m https://doi.org/10.3389/fspas.2022.1016453

o Credit card fraud
m f1 scores: [0.80, 0.86]
m https://doi.org/10.11591/ijeecs.v21.i3.pp1704-1712

Results:
o Consistent metrics
o Represent a baseline, and further fine-tuning of the package has the potential to
enhance its performance even further

27



6. Conclusion

Novel deep-learning supervised method
o Regression-Based Approach
o  No Need for Time-Step Labeling
o  Stacked Ensemble Learning
o  Practical Implementation

Python Package
o  Available on PyPI

o Easytouse
o  Well documented

Objectives and Results
o  Promising metrics

o  Primary objective is not to attain state-of-the-art metrics rather than affirming its adaptability across various domains
o To obtain state-of-the-art metrics, a deeper exploration of configurations, including stacked models, the meta-model, and
sliding windows, is recommended

In-Depth and Theoretical Discussion
o  Paper: Universal Event Detection in Time Series

28



Thank you for your attention.
Do you have any questions?



e; represents the occurrence of event j defined by starttime s and endtime e

e= [(ste)/2 - width_events, (s+e)/2 + width_events]

width_events = width of sliding window as default

30



tq: represents the mid-time of the g-th peak

width _events | width_events




