A Python Package for Time Series Event Detection

Menouar Azib

Benjamin Renard, Philippe Garnier, Vincent Génot, Nicolas André, Myriam Bouchemit

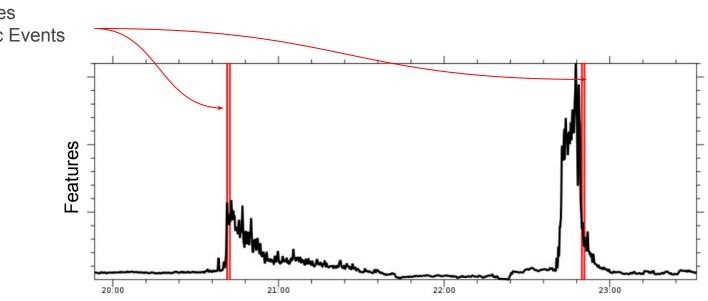
Fast Machine Learning for Science Workshop 2023, Imperial College London, 27/09, 14:15 - 14:30

Outline

- 1. Introduction
- 2. Review of Existing Literature
- 3. Method
- 4. Python Package
- 5. Usage Examples
- 6. Conclusion

1. Event Detection in Time Series

- Identifying significant occurrences (events) within time-ordered data (time series).
 - Change Point Detection
- Events:
 - Anomalies
 - Scientific Events
 - $\circ \quad \text{Frauds} \quad$
 - o ...



2. Review of Existing Literature

Supervised Machine Learning Methods

- A Common Approach: Treating Event Detection as Binary Classification.
- Each time step is labeled as either 0 (non event) or 1 (event).

	Feature 1	Feature 2	Feature 3	Event Label
2023-09-20 07:29:14.123456789	1	4	7	Θ
2023-09-20 07:29:14.987654321	2	5	8	1
2023-09-20 07:29:15.192837465	3	6	9	Θ

- Methods include Random Forest, Neural Networks, Naive Bayes, Logistic Regression, SVM, ...
- Review: <u>https://doi.org/10.1007/s10115-016-0987-z</u>

Combines 4 distinct features

Regression-Based Approach

• Prediction of continuous values \neq binary classification.

• No Need for Time-Step Labeling

- No need for labeling each time step \neq time-consuming.
- Requires only reference (true) events to be defined as specific time points/intervals of time.

 Start Time
 Stop Time

 2023-01-01 00:00:00 2023-01-01 00:01:00
 2023-01-01 00:03:00

 2023-01-01 00:02:00 2023-01-01 00:05:00
 2023-01-01 00:05:00

• Stacked Ensemble Learning Meta-Model

• Leverages the strengths of multiple base models: robustness.

• Practical Implementation

• Facilitates practical implementation: Python package.

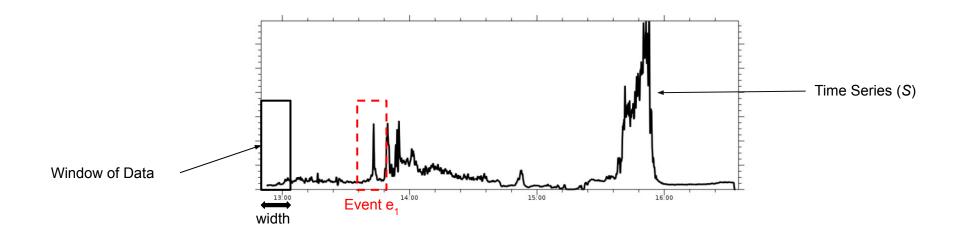
<u>Data</u>

- We require two pieces of data:

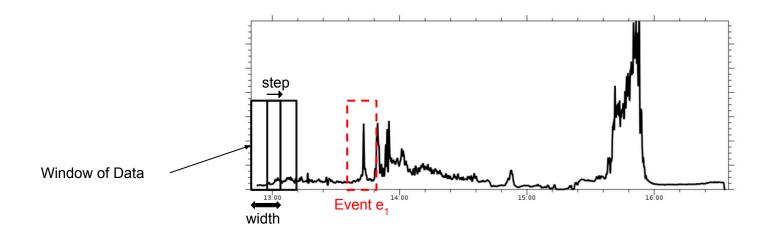
• The list of reference events (E) $E = [e_1, e_2, ...]$

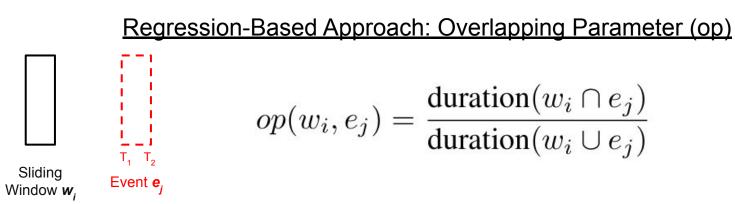


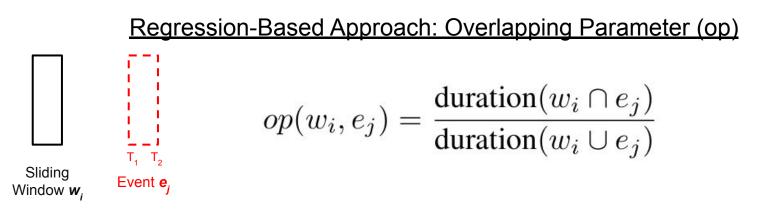
Regression-Based Approach: Sliding Windows

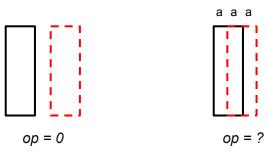


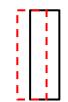
Regression-Based Approach: Sliding Windows

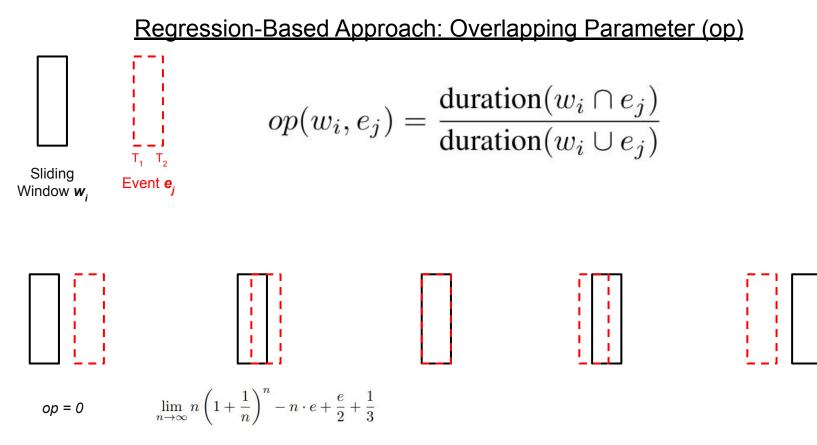


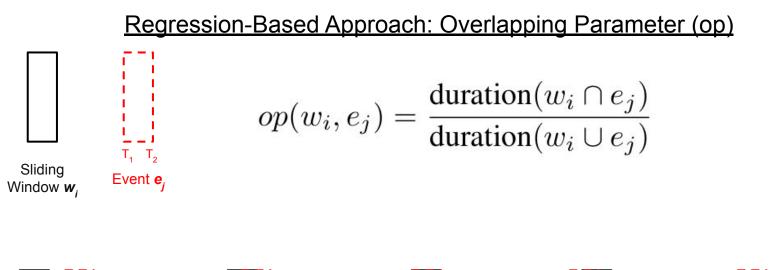


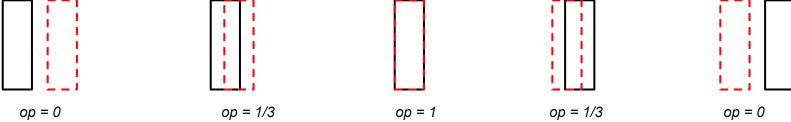


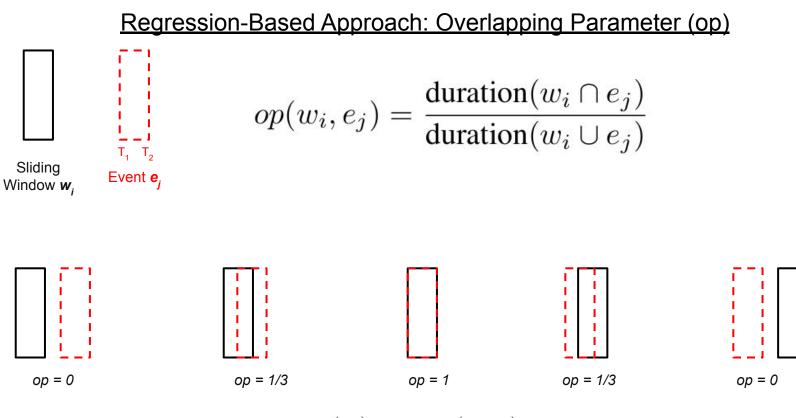






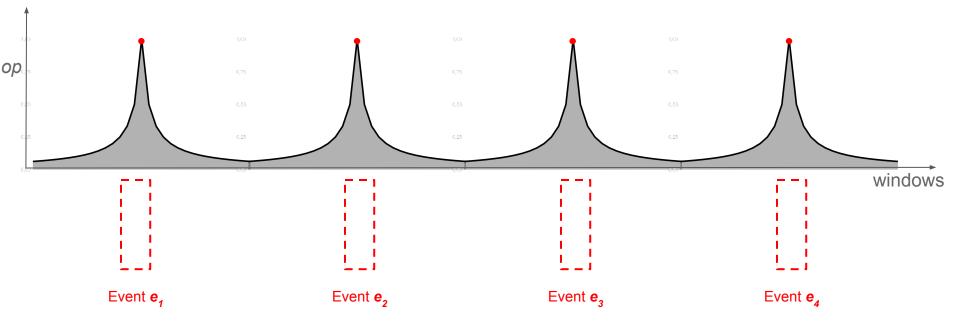




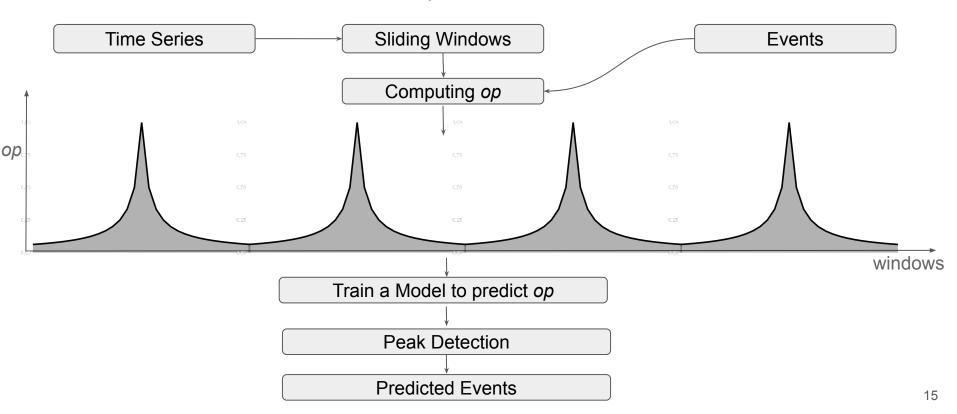


$$op(w_i) = \max_{e_j \in E} op(w_i, e_j)$$

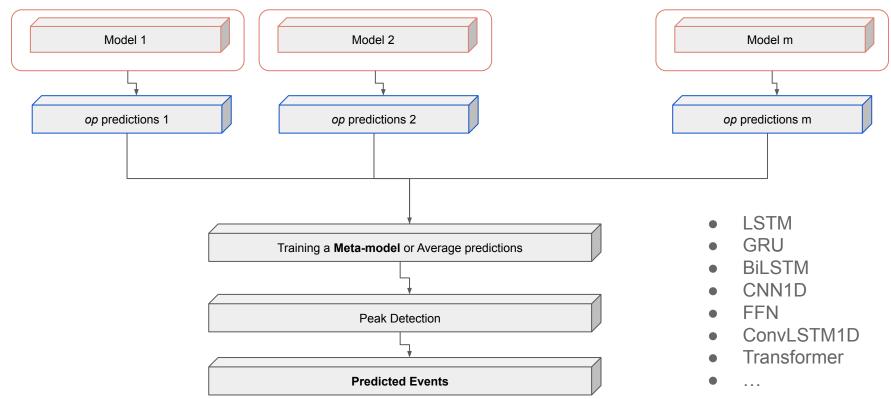
<u>Regression-Based Approach: Peaks = Events</u>



Principle of Detection



Stacking Ensemble Learning



In-Depth and Theoretical Discussion

Universal Event Detection in Time Series

$\mathbf{Menouar} \ \mathbf{Azib}^1$	MENOUAR.AZIB@AKKODIS.COM
$ {\bf Benjamin} \ {\bf Renard}^1 $	BENJAMIN.RENARD@AKKODIS.COM
Philippe $Garnier^2$	PHILIPPE.GARNIER@IRAP.OMP.EU
${\bf Vincent}~{\bf G\acute{e}not}^2$	VINCENT.GENOT@IRAP.OMP.EU
Nicolas André ²	NICOLAS.ANDRE@IRAP.OMP.EU

1: Akkodis, Blagnac, France

2: Institut de Recherche en Astrophysique et Planétologie, CNRS, Université de Toulouse, CNES, Toulouse, France

Abstract

Event detection in time series data is a crucial task spanning various domains, and extensive research has explored methods to achieve this goal. These methods range from traditional threshold-based techniques to more advanced deep learning approaches. However, a comprehensive survey of existing methods reveals that each approach has its limitations, often

Theorem 6 (The Universal Event Approximation Theorem) If T and T^{-1} are continuous, there exists a feedforward neural network $u \in \Sigma^r(\Psi)$ that utilizes a squashing function Ψ and can approximate the function f_{op} from \mathcal{Y} to [0,1] with arbitrary precision, given a sufficient number of hidden units Q. Here, $\Sigma^r(\Psi)$ represents a set of single hidden layer feedforward neural networks defined as follows:

$$\{v: \mathbb{R}^r \to \mathbb{R}: v(x) = \sum_{j=1}^Q \beta_j \Psi(A_j(x)), x \in \mathbb{R}^r, \beta_j \in \mathbb{R}, A_j \in \mathbf{A}^r\}$$

where $A_j(x) = w_j \cdot x + b_j$, with $w_j \in \mathbb{R}^r$ and $b_j \in \mathbb{R}$. The parameters w_j, b_j , and β_j correspond to the network weights.

Preprint https://doi.org/10.31219/osf.io/uabjg

Submitted to

4. Python Package

- EventDetector:
 - Github: https://github.com/menouarazib/eventdetector/
 - PyPI: pip install eventdetector-ts
 - Python 3.9+
 - TensorFlow: Already installed

Python 3.9 3.10 pypi v1.0.8 🔘 Tests and Lint passing coverage 67% license MIT DOI 10.31219/osf.io/uabjg

Universal Event Detection in Time Series

Table of Contents

- Introduction
- Installation
- Quickstart
- Make Prediction
- Documentation
- How to credit our package

4. Python Package

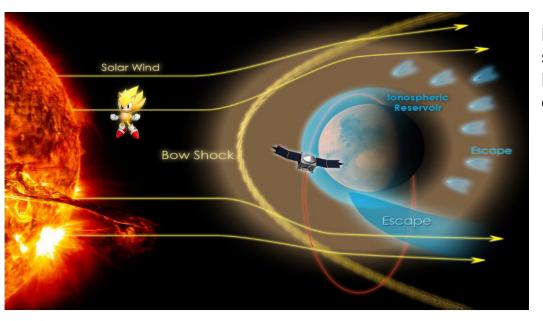
import pandas as pd
from typing import Union

Time Series
dataset: pd.DataFrame
Reference Events
events: Union[list, pd.DataFrame]

from eventdetector_ts.metamodel.meta_model import MetaModel

```
meta_model.fit()
```

Planetary Science: Martian Bow Shock



Martian bow shock is occured when the supersonic solar wind interacts with the Martian environment, leading to the formation of a shock wave.

Planetary Science: Martian Bow Shock

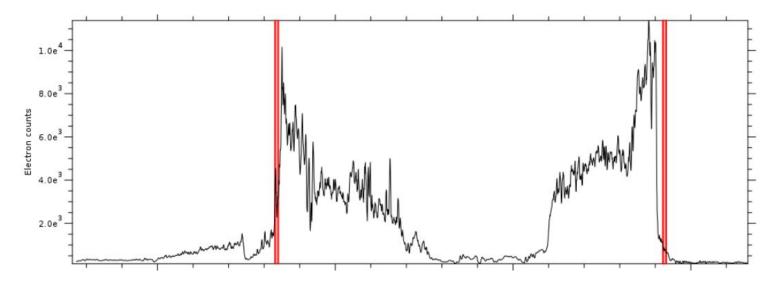


Martian bow shock is occured when the supersonic solar wind interacts with the Martian environment, leading to the formation of a shock wave.

11820 shock crossings by the Mars express spacecraft: https://doi.org/10.1016/B978-012086430-0/5001 0-5

Planetary Science: Martian Bow Shock

• The dataset represents a time series with a time sampling of 4 second: electron counts,



The French national data centre for natural plasmas of the solar system. http://cdpp.irap.omp.eu/

An on-line database and analysis tool for heliospheric and planetary plasma data. <u>http://amda.cdpp.eu/</u>

Financial Security: Credit Card Fraud

• The dataset represents a time series with a time sampling of 1 second, comprising 492 frauds (events) out of 284,807 transactions.

https://www.doi.org/10.1016/j.eswa.2014.02.026

from eventdetector_ts import load_martian_bow_shock
from eventdetector_ts.metamodel.meta_model import MetaModel

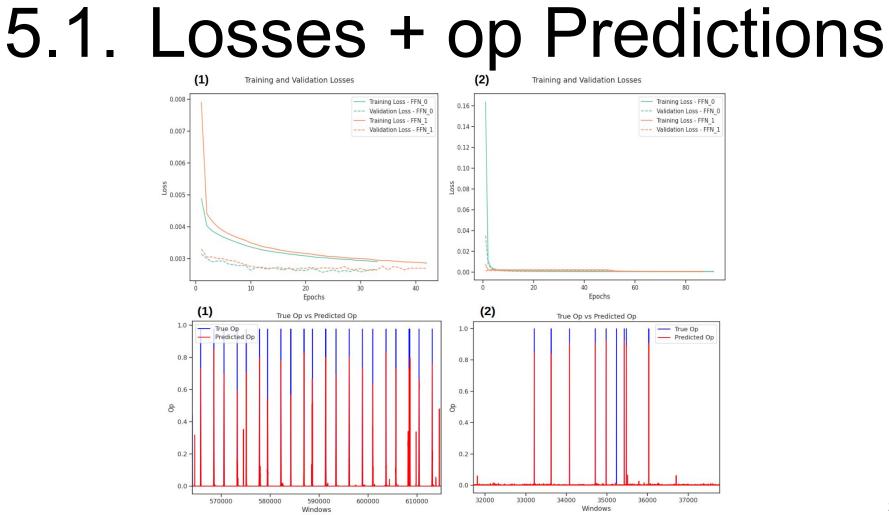
```
dataset, events = load_martian_bow_shock()
```

meta_model.fit()

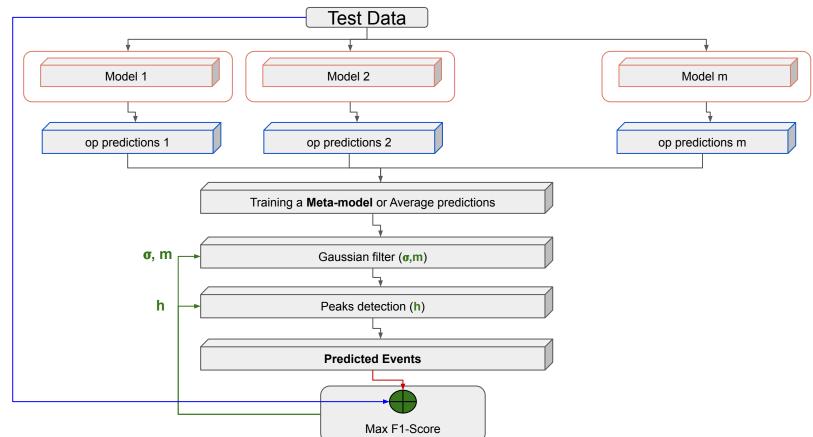
from eventdetector_ts import load_credit_card_fraud
from eventdetector_ts.metamodel.meta_model import MetaModel

```
dataset, events = load_credit_card_fraud()
```

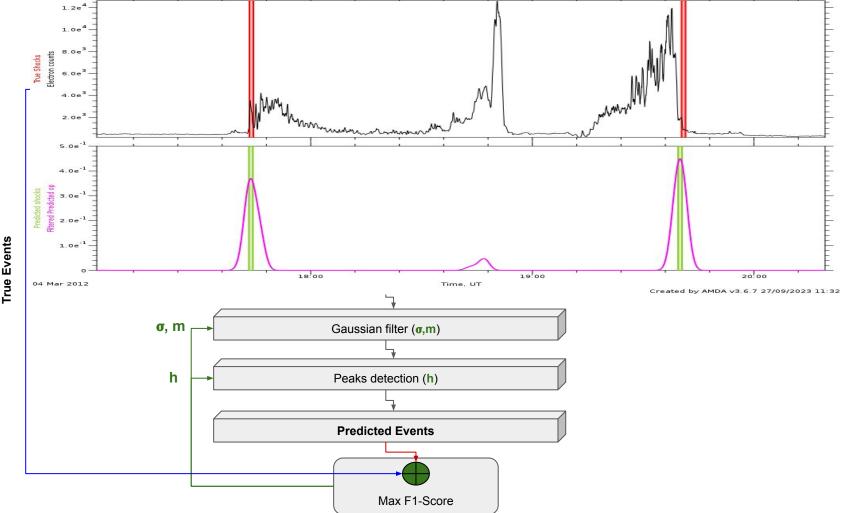
```
meta_model.fit()
```



5.2 Optimization



True Events



True Events

5.3 Results

Data set	F1-Score	Precision	Recall
Martian bow shock	0.9021	0.9455	0.8626
Credit card fraud	0.8372	0.9643	0.7397

- Literature f1 scores:
 - $\circ \quad \text{Bow shock} \quad$
 - f1 scores: [0.90, 0.92]
 - https://doi.org/10.3389/fspas.2022.1016453
 - Credit card fraud
 - f1 scores: [0.80, 0.86]
 - https://doi.org/10.11591/ijeecs.v21.i3.pp1704-1712
- Results:
 - Consistent metrics
 - Represent a **baseline**, and further fine-tuning of the package has the potential to enhance its performance even further

6. Conclusion

- Novel deep-learning supervised method
 - Regression-Based Approach
 - No Need for Time-Step Labeling
 - Stacked Ensemble Learning
 - Practical Implementation

• Python Package

- Available on PyPI
- Easy to use
- Well documented
- Objectives and Results
 - Promising metrics
 - **Primary objective** is not to attain state-of-the-art metrics rather than affirming its adaptability across various domains
 - To obtain state-of-the-art metrics, a deeper exploration of configurations, including stacked models, the meta-model, and sliding windows, is recommended
- In-Depth and Theoretical Discussion
 - Paper: Universal Event Detection in Time Series

Thank you for your attention. Do you have any questions?

 e_i : represents the occurrence of event *j* defined by starttime **s** and endtime **e**

*e*_{*i*}= [(*s*+*e*)/2 - width_events, (*s*+*e*)/2 + width_events]

width_events = width of sliding window as default

$$e_q = \left[t_q - \frac{width_events}{2}, t_q + \frac{width_events}{2}\right]$$