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What is the LHC (Large Hadron 
Collider)?

● Proton-proton (pp) collider at 
CERN, on the French-Swiss 
Border
○ Collision energies are the 

highest ever reached
● Four experiments located 

where the proton beams 
intersect

● So far LHC has produced ~ 
1016 pp collisions
○ 2 x 1017 collisions planned by 

2040
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Motivation: Futuristic Detector

Current pixel readout 
chain:

Futuristic detector:
4N pixels

100x25 μm pitch

50x12.5 μm pitch

100 μm thick sensor 100 μm thick sensor
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Problem:

Need to transfer 4-160x 

more data

Solution:

Implement AI in the 

detector readout 

electronics for fast data 

reduction
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Goals for the algorithm

Extract useful properties from incident 

particle (hit position, incident angle)
● Predict means, free of bias

● Predict uncertainties, need to describe residuals 

● Must be compact for FPGA or ASIC 

implementation

Plane of 

detector

Design keras 

network

Process:

Convert to 

qkeras

hls4ml

FPGA/ASIC 

implementation

Note: Other methods of 

data reduction are also 

being explored, including 

filtering by transverse 

momentum.

See Jennet Dickinson’s 

talk from MODE workshop 

2023:

https://indico.cern.ch/even

t/1242538/timetable/#96-

smart-pixels-with-data-

redu 

https://indico.cern.ch/event/1242538/timetable/#96-smart-pixels-with-data-redu
https://indico.cern.ch/event/1242538/timetable/#96-smart-pixels-with-data-redu
https://indico.cern.ch/event/1242538/timetable/#96-smart-pixels-with-data-redu
https://indico.cern.ch/event/1242538/timetable/#96-smart-pixels-with-data-redu


Towards a pixel track trigger
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Problem: More complex final states → 
more hits → more hit combinations for 
track seeding
• Expensive, slow

Solution: Predicted angle + uncertainty 
→ region of expected hits in the next 
layer
• Small uncertainty → small region
• Ignore the rest!

Fast tracking and vertexing
• Valuable for hh, e+e-, μμ
• At HL-LHC: makes L1 pixel trigger 

feasible?Angle alpha Angle beta



Initial Network Architectures

Training Dataset:

Simulated MIP 

interactions in 

21x13 array of 

pixels

Located at 

radius of 30 mm

3.8 T magnetic 

field

Time steps of 

200 picoseconds

● Mostly dense layers

● Predicted 1, at most 2, parameters given an input cluster

● Did not include time information

Example: 1DX

Input: 

cluster

Dense, 

64

Dense, 

64

Dense, 

2

Output:

x with 

uncertainty
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Mixture Density Network
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Use Mixture Density Network (MDN) to simultaneously fit the position, angles, and 

parameter errors of the incident tracks of all the clusters 

● Predict the parameters of a multidimensional gaussian likelihood distribution 

● Loss is a sum of these likelihoods over all clusters

● MDN presents interesting challenges for implementation on FPGA

Network should have:

● Greatest possible precision
● Extract largest possible amount of info
● Smallest possible network size
● Time information

x y Covariance matrix (10 

elements)

cotA cotB
Total network outputs: 14
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QSeparableConv2D(5,3)

Input: 

cluster

Outputs:

x, y, cotA, cotB, 10 matrix 

elements, uncertainties

2x2 avg 

pooling

Dense

Params: 3,476

QSeparableConv2D(5,3)

QConv2D (5,1)

Dense

Dense

final network - 
qkeras

Activations: 

quantized_tanh(8,0,1) for 

convolutions, 

quantized_relu(16, 4) for 

dense layers except last
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quantized_bits(8,2,1, alpha=1)

quantized_bits(8,2,1, alpha=1)

quantized_bits(8,2, alpha=1)

quantized_bits(8,2, alpha=1)

quantized_bits(8,2, alpha=1)

quantized_bits(8,2, alpha=1)

quantized_bits(16,4, alpha=1)
(wider b/c of output 

dynamic range)

Use L1 regularization to 

force neurons to specialize.



QSeparableConv2D(5,3)

Input: 

cluster

Outputs:

x, y, cotA, cotB, 10 matrix 

elements, uncertainties

2x2 avg 

pooling

Dense

Params: 3,476

QSeparableConv2D(5,3)

QConv2D (5,1)

Dense

Dense

final network - 
hls4ml

Activations: 

quantized_tanh(8,0,1) for 

convolutions, 

quantized_relu(16, 4) for 

dense layers except last
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quantized_bits(8,2,1, alpha=1)

quantized_bits(8,2,1, alpha=1)

quantized_bits(8,2, alpha=1)

quantized_bits(8,2, alpha=1)

quantized_bits(8,2, alpha=1)

quantized_bits(8,2, alpha=1)

quantized_bits(16,4, alpha=1)
(wider b/c of output 

dynamic range)

Final precisions:

default_precision='fixed<23,7>'

Last layer requires 'fixed<25,9>' 

for result and accumulator to 

retain necessary output range.



Full Synthesis Resource Usage & Latency
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Synthesis for:

Alveo U250 

accelerator card

Includes fifo depth 

optimization.

Clock frequency 200MHz

Not yet there for an ASIC, but sufficient as proof of concept.

Directions for improvement:
● Initiation interval must be 25ns (one interference starts every LHC clock)

● DSP Usage - complex multipliers too much floor space on chip

● Accumulators must be reduced to much smaller bitwidth

Bitwise agreement is not a major concern – achievable once above are addressed.

VivadoSynthReport: 

LUT: 66307

FF : 27153

BRAM_18K: 12.5

URAM: 0

DSP48E: 341

CosimReport:

RTL: Verilog

Status: Pass

LatencyMin: 299

LatencyMax: 299

IntervalMin: 276, 

IntervalMax: 276, 

LatencyAvg: 299.0

IntervalAvg: 276.0



Final Network Performance
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= qkeras = hls4ml



Next steps…

• Deploy proof-of-concept on FPGA
• Demonstrate real time inference on hardware and validate 

against software network
• Bring realism to proof-of-concept

• More accurate input data 
(200ps ADC not realistic)

• Smaller bit widths for weights and
accumulators

• Improve initiation interval to be consistent
with LHC

• Estimate power consumption per inference
• Find more use cases

• Real-time direction reconstruction has many uses

Design 

keras 

network

Convert to 

qkeras

hls4ml

FPGA/ASIC 

implementation
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Estimated Resource Usage & Latency
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================================================================

== Utilization Estimates

================================================================

* Summary: 

+---------------------+---------+-------+---------+---------+------+

|         Name        | BRAM_18K| DSP48E|    FF   |   LUT   | URAM |

+---------------------+---------+-------+---------+---------+------+

|DSP                  |        -|      -|        -|        -|     -|

|Expression           |        -|      -|        0|        2|     -|

|FIFO                 |       55|      -|     2555|     4336|     -|

|Instance             |       50|    339|    38729|   132161|     -|

|Memory               |        -|      -|        -|        -|     -|

|Multiplexer          |        -|      -|        -|        -|     -|

|Register             |        -|      -|        -|        -|     -|

+---------------------+---------+-------+---------+---------+------+

|Total                |      105|    339|    41284|   136499|     0|

+---------------------+---------+-------+---------+---------+------+

|Available SLR        |     1344|   3072|   864000|   432000|   320|

+---------------------+---------+-------+---------+---------+------+

|Utilization SLR (%)  |        7|     11|        4|       31|     0|

+---------------------+---------+-------+---------+---------+------+

|Available            |     5376|  12288|  3456000|  1728000|  1280|

+---------------------+---------+-------+---------+---------+------+

|Utilization (%)      |        1|      2|        1|        7|     0|

+---------------------+---------+-------+---------+---------+------+

+ Latency: 

    * Summary: 

    +---------+---------+----------+----------+-----+-----+----------+

    |  Latency (cycles) |  Latency (absolute) |  Interval | Pipeline |

    |   min   |   max   |    min   |    max   | min | max |   Type   |

    +---------+---------+----------+----------+-----+-----+----------+

    |      278|      278| 1.390 us | 1.390 us |  276|  276| dataflow |

    +---------+---------+----------+----------+-----+-----+----------+

Estimates for:

Alveo U250 

 accelerator 

card



hls4ml Conversion

Problem: slicing in our model couldn’t 
be converted to hls

Solution: a new model architecture 
without slicing

Design 

keras 

network

Convert to 

qkeras

hls4ml

FPGA/ASIC 

implementation
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3Dallparams
Conv2D (4,3)

Conv2D (4,3)

Input: 

cluster

Outputs:

x, y, cotA, cotB, 10 

matrix elements, 

uncertainties

cotB avg 

pooling
cotA avg 

pooling

Y average 

pooling

X average 

pooling
Matrix elements 

dense

Dense

DenseDenseDense

Params: 7,891

Dense
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QSeparableConv2D 

(5)

Input: 

cluster

Outputs:

x, y, cotA, cotB, 10 matrix 

elements, uncertainties

cotB avg 

pooling
cotA avg 

pooling

Y average 

pooling

X average 

pooling

Matrix 

elements avg 

pooling

Dense

DenseDenseDense

Params: 2,184

Dense Dense

QSeparableConv2D 

(5)

QConv2D 

(1,1)

QConv2D 

(1,1)
QConv2D 

(1,1)

QConv2D 

(1,1)

QConv2D 

(1,1)

Dense

Dense Dense Dense Dense

tanhconv_noslice Activations: tanh for 

convolutions, relu for 

dense layers
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Full precision 
network Conv2D (5,3)

Conv2D (5,3)

Input: 

cluster

Outputs:

x, y, cotA, cotB, 10 

matrix elements, 

uncertainties

cotB avg 

pooling
cotA avg 

pooling

Y average 

pooling

X average 

pooling
Matrix elements 

avg pooling

Dense

DenseDenseDense

Params: 2,181

Dense Dense
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tanhconv_noslice Performance
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Full precision network performance
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