Portable Acceleration of CMS Mini-AOD

Patrick McCormack (MIT)

Production with Coprocessors as a Service
For the CMS Collaboration

2

Q September 25, 2023

I B FastML 2023
I I I I P. McCorm - FastML 2023

The future of CMS computing

* As the LHC transitions to the 50000 emspupic T T T T,
I . I E I TOtZaOIZEEg‘imates /
High Luminosity LHC, CM5 R i
workflow complexity will O S i S
only increase £ 7
. S 500001
* CPU-only capabilities g
expected to increase, but it £ 100001 - f
— i g]
would be helpful to pursue = e s .
A 2021 2023 2025 2027 2029 2031 2033 2035 2037
additional performance Year

enhancements

ardware-based acceleration

* Machine learning (ML) based
algorithms are becoming
increasingly common in CMS
workflows

* Luckily, inference for ML algorithms
(and some domain algorithms) can
be accelerated dramatically by
running on cCoOprocessors

* E.g. GPUs, FPGAs, and Intelligence
Processing Units (IPUs)

P. McCormack (MIT) - FastML 2023 3

eterogeneous computing

. COPROCESSOR

* The most straightforward way to deploy (GPUFPGAASIC)
algorithms on coprocessors is to run

workflows on machines with coprocessors —

(GPU,FPGA ASIC)

* This “Direct connection” can be inefficient:

Traditional direct CPU->GPU connection:

\ S

1
' Too few models or cores Narrow “sweet spot” in
= underutilized GPU terms of models or cores

COPROCESSOR
(GPU,FPGA ASIC)

)

— | Also: workflows can only take advantage of
Too many models or cores = ! acceleration if they run on a machine with a
oversaturated GPU | coprocessor — expensive at large scales!

P. McCormack (MIT) - FastML 2023 4

Inference as a Service

* “Inference as a Service” (laaS):
alternate coprocessor deployment
scheme where coprocessor-enabled
machines host an inference server
and remote jobs send inference
requests via network connection

Inference as a Service:

rd

Adjust the number of GPUs per
client-CPU core to get as close to the
“sweet spot” as possible

P. McCormack (MIT) - FastML 2023

CPUs

CPUs

CPUs

Clients

Coprocessor
= (GPU/FPGA/IPU/
N etc)

Coprocessor

(GPU/FPGA/IPU/
etc)

Servers

Model A

ModelB

ModelC

ModelD

e Within CMS software (CMSSW), the laaS deployment scheme is called
“Services for Optimized Network Inference on Coprocessors” (SONIC)

CMS Preliminary

Client CPU

Client CPU

Client CPU

Client CPU

gRPC CONNECTION #rararasms s ns s sttt e e E E E E LA AR R R EEE NN AN AR AR R R R narannna .
Al Inference Cluster Server
acquire() (CPU/GPU/IPU/etc) (Local/Remote)
Send inputs Triton Inference Server
Triton Inference Server
oroduce() Load Balancer Moc.lel
Repository

Receive outputs

Triton Inference Server

Triton Inference Server

P. McCormack (MIT) - FastML 2023

SONIC

* SONIC uses NVIDIA Triton inference servers

* CMSSW only handles preprocessing and
1/0, not inference framework

e Triton supports many ML backends: ONNX,
TensorFlow, PyTorch, Scikit-Learn, etc.

* Improves model-building flexibility

* Makes asynchronous inference requests

P. McCormack (MIT) - FastML 2023

https://developer.nvidia.com/nvidia-triton-inference-server

[1702.04685]
CMS Run 2 Data Flow

One common
implementation:
Mini-AOD

e As a testbed for SONIC-enabled
deployment, we created a MiniAOD
demonstrator workflow

* Runs a refinement and slimming step
of CMS data processing

* Full MiniAOD processing workflow
typically run Ymonthly

Takes 24h to run

Typically serving ~5 different analyses

Mini-AOD production typically takes about 0.5 seconds
per event on production grid nodes

P. McCormack (MIT) - FastML 2023

https://arxiv.org/abs/1702.04685

Studying SONIC at scale

* Inferences for three classes of algorithms were run through SONIC:
* ONNX-based jet tagger
* TensorFlow based missing energy calculation
* TensorFlow based CNN for tau lepton ID

* These algorithms consume about 10% of total workflow latency

Algorithm Time [ms] Fraction [%] Input [MB]

PN-AK4 42.4 4.3 0.04

PN-AKS 11.4 1.1 0.003

DeepMET 13.2 1.3 0.33

DeepTau 211 2 1.18
ParticleNet+DeepMET+DeepTau 88.1 8.8 1.55

Total 993.3 100.0 —

Computing resources

* MiniAOD demonstrator was deployed in
multiple computing contexts

* Google Cloud (GCP): Triton server on cloud
VM, with client-side CPUs also in cloud

* Purdue computing cluster: 2 T4s available —
client CPUs at Purdue (can also use cloud
GPUs)

* Fermilab computing: We had (non-exclusive)
access to 2 T4s at Fermilab

* NOTE: Can use CPUs at one site to
communicate with GPUs at another site

P. McCormack (MIT) - FastML 2023

L
L. 2

Ferm

lab

105 CMS Simulation Preliminary (13 TeV) CMS Simulation Preliminary (13 TeV)
Iw :Et 1 I 1 1 1 1 T I 1 1 1 1 L I 1 \E E :\ 1 I 1 1 1 1 T I 1 1 1 1 L I 1 \:
E | — OnTeslaT4 1 £
2 1o+ - OnCPU a2
= [PN-AK4 ONNX A k] 3

;o] —— PN-AK4 TRT e B -4
8 103}) AT 4 ©10°% E
o S
- e
2 | F
< U B e ey netet'Y
————————— PR S S
1 et - N
.l |]
ex I
Z 5L
= % % 2:
o i
L I L I I l - ! . I 1 [L L L L I L -
10° 10! 102 10° 10° 102
Batch Size Batch Size

* Triton provides a model analyzer tool to optimize server settings

* For example, we can adjust parameters like preferred batch size
* We can also compare different backends if there are multiple versions and try

optimization schemes such as TensorRT (TRT)

P. McCormack (MIT) - FastML 2023

11

Optimizing performance: CPU-to-GPU ratio

4.4 ¢ CMS S/mulat/on Prel/mlnary (13 TeV)
F PyTorch PartcheNet for AK4 jets I]
43 F DeepMET —:
C ——— DeepTau with TRT]
4.2 PyTorch ParticleNet for AK8 jets (3 models on 1 GPU)
E e Average of "Direct-inference" Jobs

4.1F :

Throughput [evt/s]

3.4 E PR A T T T S TN SN [N S T ST A AN T T SO S M ST S .
100 200 300 400 500 600

Number of synchronized 4-threaded jobs

* Having explored server parameters, we can test the number of client
jobs that a single GPU can handle

* We perform these tests in the cloud, as we need to synchronize jobs
running on O(1000) CPU cores

Testing performance: distance-induced latency?

CMS simulation Preliminary (13 TeV)
'a‘ - U U U U | U U U U | U U U U | U U U U | U U U U B
E i —— SONIC with GCP Server
'_% 5 - —=— SONIC with Purdue Server
> — -
8. - e Average of "Direct-inference" Jobs
S B
3 -
o 5
o = -
= 4.5 I
4\ _
3.5 i
[L L L L I L L L L I L L L L I L L L L I L L L L]
0 5 10 15 20 25

Number of synchronized 4-threaded jobs

* Because we run algorithms asynchronously, per-event latency should not be
negatively affected by client-to-server distance

* This was verified by running client jobs at Purdue that talked with servers either
locally at Purdue or in the cloud (physically over 100 miles from the client)

Testing performance: server overhead?

CMS simulation Preliminary (13 TeV)
'6'257‘“‘I““\““\““I‘i
= i
q>) - —e— "CPU Direct-inference" Jobs
g 20 © . SONIC Jobs on Local CPUs]
o i
S
S 15+ .
O L
S L
z
= 1of .

5F .
1.1
01.05
81—y
=
C0.95
0.9

2 4 6 8 10 12 14 16 18 20 22
Number of threads per job

* SONIC deployment accounts for potential server failures by reserving the
ability to deploy a “fallback” server based on client-side CPU resources

* |deally, this would not result in higher latencies relative to running entirely
on CPU without SONIC - we do not observe any such slowdowns

Testing performance: running at large scale

CMS Simulation Preliminary (13 TeV)

SONIC Jobs

£ 0.24
c

g 022
2 os
"'6 .
g 016
< 0.14
Z 0.12
O

3 0
N 0.08
© 0.06
£ 0.04

2 002}

] -------- CPU "Direct-inference" Jobs

0 b= T N :--|--|--n--r'r'l-n--l'r'|.4-4--|-l .
3 32 34 36 38 4 42 44 46 48 5
Throughput [evt/s]

 Lastly, we performed a scale-out test at GCP, using 10,000 CPU cores split into
2,500 4-threaded client jobs

e 100 Tesla T4 GPUs were used to host the MiniAOD models with a Kubernetes load
balancer to ensure even GPU usage

* Peak network usage was ~15 GB/s (total bandwidth coming into GPU cluster)

Conclusions

* Inference as a Service, implemented as SONIC in CMSSW, can help alleviate
CMS computing pressures by accelerating algorithm execution

* With SONIC, we achieve

* Increased throughput: GPUs enable acceleration of ML algorithms

* Optimizable GPU-to-CPU ratios: we can save money if looking to buy GPUs or
increase utilization of current resources

* Flexible algorithm design: Not restricted to only supported frameworks in CMSSW
* Use of remote GPUs

 Demonstrated robustness and minimal impact of potential risks
* Use of fallback servers shown to not impact workflow throughput

* Network bandwidth requirements not problematic at scales similar to true
MiniAOD workflow deployment

Future and challenges

* To run SONIC in full production, we need a GPU resources scouting
and server deployment scheme

* Currently developing a Kubernetes-based framework for dynamic server
creation and deletion

e Convert more reconstruction algorithms to ML to take advantage of
hardware-based acceleration™

* Can expand to other GPU vendors and coprocessor types with custom
backends or interoperable servers

*And potentially improve performance

