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The future of CMS computing
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ardware-based acceleration

* Machine learning (ML) based
algorithms are becoming
increasingly common in CMS
workflows

* Luckily, inference for ML algorithms
(and some domain algorithms) can
be accelerated dramatically by
running on cCoOprocessors

* E.g. GPUs, FPGAs, and Intelligence
Processing Units (IPUs)
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eterogeneous computing

. COPROCESSOR

* The most straightforward way to deploy (GPUFPGAASIC)
algorithms on coprocessors is to run

workflows on machines with coprocessors —

(GPU,FPGA ASIC)

* This “Direct connection” can be inefficient:

Traditional direct CPU->GPU connection:

\ S

1
' Too few models or cores Narrow “sweet spot” in
= underutilized GPU terms of models or cores

COPROCESSOR
(GPU,FPGA ASIC)

)

— | Also: workflows can only take advantage of
Too many models or cores = ! acceleration if they run on a machine with a
oversaturated GPU | coprocessor — expensive at large scales!

_____________________________________________
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Inference as a Service

* “Inference as a Service” (laaS):
alternate coprocessor deployment
scheme where coprocessor-enabled
machines host an inference server
and remote jobs send inference
requests via network connection

Inference as a Service:

rd

Adjust the number of GPUs per
client-CPU core to get as close to the
“sweet spot” as possible

_____________________________________
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e Within CMS software (CMSSW), the laaS deployment scheme is called
“Services for Optimized Network Inference on Coprocessors” (SONIC)

CMS Preliminary
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SONIC

* SONIC uses NVIDIA Triton inference servers

* CMSSW only handles preprocessing and
1/0, not inference framework

e Triton supports many ML backends: ONNX,
TensorFlow, PyTorch, Scikit-Learn, etc.

* Improves model-building flexibility

* Makes asynchronous inference requests
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https://developer.nvidia.com/nvidia-triton-inference-server

[1702.04685]
CMS Run 2 Data Flow

One common
implementation:
Mini-AOD

e As a testbed for SONIC-enabled
deployment, we created a MiniAOD
demonstrator workflow

* Runs a refinement and slimming step
of CMS data processing

* Full MiniAOD processing workflow
typically run Ymonthly

Takes 24h to run

Typically serving ~5 different analyses

Mini-AOD production typically takes about 0.5 seconds
per event on production grid nodes
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https://arxiv.org/abs/1702.04685

Studying SONIC at scale

* Inferences for three classes of algorithms were run through SONIC:
* ONNX-based jet tagger
* TensorFlow based missing energy calculation
* TensorFlow based CNN for tau lepton ID

* These algorithms consume about 10% of total workflow latency

Algorithm Time [ms] Fraction [%] Input [MB]

PN-AK4 42.4 4.3 0.04

PN-AKS 11.4 1.1 0.003

DeepMET 13.2 1.3 0.33

DeepTau 211 2 1.18
ParticleNet+DeepMET+DeepTau 88.1 8.8 1.55

Total 993.3 100.0 —



Computing resources

* MiniAOD demonstrator was deployed in
multiple computing contexts

* Google Cloud (GCP): Triton server on cloud
VM, with client-side CPUs also in cloud

* Purdue computing cluster: 2 T4s available —
client CPUs at Purdue (can also use cloud
GPUs)

* Fermilab computing: We had (non-exclusive)
access to 2 T4s at Fermilab

* NOTE: Can use CPUs at one site to
communicate with GPUs at another site
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* Triton provides a model analyzer tool to optimize server settings

* For example, we can adjust parameters like preferred batch size
* We can also compare different backends if there are multiple versions and try

optimization schemes such as TensorRT (TRT)
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Optimizing performance: CPU-to-GPU ratio
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* Having explored server parameters, we can test the number of client
jobs that a single GPU can handle

* We perform these tests in the cloud, as we need to synchronize jobs
running on O(1000) CPU cores




Testing performance: distance-induced latency?

CMS simulation Preliminary (13 TeV)
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* Because we run algorithms asynchronously, per-event latency should not be
negatively affected by client-to-server distance

* This was verified by running client jobs at Purdue that talked with servers either
locally at Purdue or in the cloud (physically over 100 miles from the client)



Testing performance: server overhead?

CMS simulation Preliminary (13 TeV)
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* SONIC deployment accounts for potential server failures by reserving the
ability to deploy a “fallback” server based on client-side CPU resources

* |deally, this would not result in higher latencies relative to running entirely
on CPU without SONIC - we do not observe any such slowdowns



Testing performance: running at large scale

CMS Simulation Preliminary (13 TeV)
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 Lastly, we performed a scale-out test at GCP, using 10,000 CPU cores split into
2,500 4-threaded client jobs

e 100 Tesla T4 GPUs were used to host the MiniAOD models with a Kubernetes load
balancer to ensure even GPU usage

* Peak network usage was ~15 GB/s (total bandwidth coming into GPU cluster)




Conclusions

* Inference as a Service, implemented as SONIC in CMSSW, can help alleviate
CMS computing pressures by accelerating algorithm execution

* With SONIC, we achieve

* Increased throughput: GPUs enable acceleration of ML algorithms

* Optimizable GPU-to-CPU ratios: we can save money if looking to buy GPUs or
increase utilization of current resources

* Flexible algorithm design: Not restricted to only supported frameworks in CMSSW
* Use of remote GPUs

 Demonstrated robustness and minimal impact of potential risks
* Use of fallback servers shown to not impact workflow throughput

* Network bandwidth requirements not problematic at scales similar to true
MiniAOD workflow deployment



Future and challenges

* To run SONIC in full production, we need a GPU resources scouting
and server deployment scheme

* Currently developing a Kubernetes-based framework for dynamic server
creation and deletion

e Convert more reconstruction algorithms to ML to take advantage of
hardware-based acceleration™

* Can expand to other GPU vendors and coprocessor types with custom
backends or interoperable servers

*And potentially improve performance



