SPVCNN for clustering in HGCAL and HCAL

MIT: Jeff Krupa, Patrick McCormack, Zhijian Liu, Phil Harris, Song Han UW: Alex Schuy, Haoran Zhao, Haotian Tang, Shih-Chieh Hsu, Scott Huack

Fast Machine Learning Workshop 2023 25.09.2023

Overview

Overview

Hadron calorimeter

- Good resolution is important for physics observables

Approaches to clustering

- Hadron calorimeter clustering is separated layer-by-layer (ParticleFlow "PF" clustering)
 - underutilizes depth and shape info available
- ML provides a natural way to introduce the depth/timing profile into clustering algorithms
 - could help with e.g. pileup suppression

HCAL O(10k) channels

HGCAL O(6M) channels

Which high throughput algorithms can provide good physics performance in these detectors?

Graph Neural Networks

- Graphs have been successfully applied to this problem (eg. GravNet)
- Also rule-based methods (eg. TICL)
- We are approaching the problem with a computationally-efficient model for convolutions on sparse data

SPVCNN

2007.16100

- Proven for semantic and instance segmentation in 3D vision tasks
 - low latency, high accuracy constraints (driverless cars)
- Sparse points are first voxelized and then convolved
 - HCAL event embedded into a 6D space using SPVConv blocks

SPVCNN

2007.16100

- **SPVCNN** is memory and computation efficient compared to leading CNNs (e.g. *voxel models* and *point cloud models*)
 - Low memory and computational overhead
 - No need to construct graph adjacency matrix

Throughput

- SPVCNN can achieve 420 inferences/second on a single T4 GPU

- Using a GPU, SPVCNN is ~16x faster to form clusters than PF clustering on CPU
- O(1k) CPU threads can be served by a single GPU before GPU limits the workflow

Throughput

- SPVCNN can achieve 420 inferences/second on a single T4 GPU

- Using a GPU, SPVCNN is ~16x faster to form clusters than PF clustering on CPU
- O(1k) CPU threads can be served by a single GPU before GPU limits the workflow SPVCNN provides speedup on GPU and is integrated into CMS software

Object condensation loss

- We use the object condensation loss: <u>2002.03605</u>
- HCAL event is first embedded into a space using SPVCNN convolution blocks
 - Each hit is assigned a "condensation score" by the network
 - Hits are then ranked in descending condensation score, and assigned to condensation points (forming clusters)
 - Two noteworthy hyperparameters $\{t_{d}, t_{\beta}\}$
 - Loss is weighted by cluster energy

Results

HGCAL O(6M) channels

HCAL results: jet resolution

- Jet energy resolution for AK4 jets (note: no re-derived corrections)

HCAL results: jet resolution

- Jet energy resolution for AK4 jets (note: no re-derived corrections)

SPVCNN performs similarly in jet resolution to generic clustering. Currently re-deriving corrections 20

- How does SPVCNN clustering affect global observables like MET?
 - generated $Z(\mu\mu)$ +jet in Run 3 with and without pileup to measure this

- How does SPVCNN clustering affect global observables like MET ?
 - generated $Z(\mu\mu)$ +jet in Run 3 with and without pileup to measure this

- How does SPVCNN clustering affect global observables like MET ?
 - generated $Z(\mu\mu)$ +jet in Run 3 with and without pileup to measure this

Detectors

HCAL O(10k) channels HGCAL O(6M) channels

HGCAL Results: event display

HGCAL Results: event display

HGCAL Results: metrics

mIoU = fraction of hits correctly identified as noise *SQ* = overlap between reco-truth clusters for matched pairs *RQ* = fraction of clusters that were matched. *PQ* = *SQ***RQ*

Method	mIoU	SQ	RQ	PQ
GravNet	0.93	0.89	0.74	0.69
GravNet (optimized)*	0.93	0.90	0.83	0.76
SPVCNN++	0.98	0.92	0.85	0.80

* optimized = version of GravNet model tuned to maximize these metrics

HGCAL Results: metrics

mIoU = fraction of hits correctly identified as noise *SQ* = overlap between reco-truth clusters for matched pairs *RQ* = fraction of clusters that were matched. *PQ* = *SQ***RQ*

Method	mIoU	SQ	RQ	PQ
GravNet	0.93	0.89	0.74	0.69
GravNet (optimized)*	0.93	0.90	0.83	0.76
SPVCNN++	0.98	0.92	0.85	0.80

SPVCNN performs well on HGCAL according to metrics used in clustering tasks

* optimized = version of GravNet model tuned to maximize these metrics

Conclusions

- 1. We introduced a **memory-efficient model** (SPVCNN) for clustering
 - a. High throughput implementation on GPU
- 2. Clustering with SPVCNN yields physics performance **compatible with GravNet** for HGCAL and compatible with **generic PF clustering** for HCAL
- 3. Future plans:
 - a. Can be deployed in CMS soon
 - b. Finalize physics corrections and computing measurements
 - c. Goal: Implementation for HCAL+HGCAL @ HLT

Backup

Integrating SPVCNN in CMSSW

- We integrated SPVCNN into CMSSW to test our workflow
 - We used <u>SONIC</u> + a GPU-enabled <u>triton server</u>
 - can also be run on local CPU resources
- This scheme largely **removes HCAL clustering time from offline**
 - Future goal: HGCAL+HCAL implementation on HLT

HCAL Results: event display

Depth 3

32

HCAL Results: event display

SPVCNN trained for PF targets creates contiguous, multi-depth clusters

Hyperparameters

- From the training dataset, we choose t_{β} after the spike, $t_{\beta} = 0.1$
 - For too-small values, each hit will be considered its own cluster
- We choose t_d {0.6,0.7,0.8}

Object condensation score for all hits

In truth clusters, most hits lie within distance ~.7 of the condensation point

Hyperparameters

- We also choose based on high-level objects
- Jet energy scale and resolution vs. t_d for AK4 jets (TTbar run3)
 - Relatively insensitive to t_β
 - We choose $t_d = 0.7$ as a starting point

- How does SPVCNN clustering affect global observables like MET?
 - generated $Z(\mu\mu)$ +jet in Run 3 with and without pileup to measure this

HCAL Results (with pileup)

HCAL Results (with pileup)

HCAL Results (zero pileup)

- Resolution of particles defined by Reco E gen E
- Matches PF nicely

HCAL Results (zero pileup)

- Energy deposited as a function of eta

energy vs eta pf electron

Default

beta10 td6

beta10 td7

ta10 td8

2 3 4

0

eta

-4 -3 -2 -1 0

- Matches PF

24000

22000

20000

18000

16000

14000

12000

10000

8000

6000

4000F

2000

E

a

Default

Number = 8936

Number = 8982

Number = 8980

Number = 8970

tbeta10 td6

tbeta10 td7

tbeta10 td8

-3 -2 -1 0

eta

2 3 4

0

-4 -3 -2 -1 0

2

HCAL results (with pileup)

- Larger number of neutral hadrons
 - Larger difference for $\{t_d, t_\beta\}$ than in zero PU case

Latency checks

- Measured with 4xNVIDIA 3090-TIs
- Preliminary, unoptimized

Condensation loss

- Define a charge $q = tanh^2(\beta)+q_{min}$ where $\beta \sim [0,1]$ is condensation score for each hit that is a parameter
- Loss is made of:
 - Repulsive term (push points and condensation points belonging to different objects apart from each other)
 - Attractive term (bring points and their condensation points together)
 - Beta term (break potential degeneracies from repulsive/attractive term, avoiding trivial solutions)
- To make clusters:
 - Order all hits by decreasing β values. Go down the list, clustering points within t_d of the condensation point (if the condensation point has been clustered, ignore it).
 - Once the β value reaches t_{β} , the clustering is complete.

HCAL: training target

- Also interested in HCAL to include depth and timing information
- We train on Run 3 TTbar (with and without PU)
- Making truth definition for HCAL is a challenging task
 - Initially, we used a custom truth definition:
 - For each *RecHit*, find the *SimTrack* whose *SimHits* constituted the largest fraction of the total simulated energy in the *RecHit* HCAL cell.
 - cluster label = this SimTrack ID
 - Using this truth-level definition as a training target gives **improved jet response and resolution metrics** (relative to PF), **however we get discontiguous clusters that are not easy for SPVCNN to reproduce**
 - Leads to a large number of clusters and large number of particles (mostly neutral hadrons)

HCAL: event display

HCAL: event display

HCAL: event display

For now, we use PF HCAL cluster labels as the target

HCAL: training target

- This naive approach is not a good training target for SPVCNN
 - High-density regions with many co-linear particles \rightarrow interleaved clusters with discontinuities \rightarrow not reconstructable
- We are converging on a reasonable ground truth definition for HCAL

HGCAL Dataset

- We first use the same HGCAL dataset used for GravNet
 - Ditau in endcaps
 - zero pileup
 - O(20k) hits per event
 - Truth cluster definition: same as GravNet
 - energy deposits from reconstructed hits are traced to particles using Geant4 tracking
 - particles that cannot be reasonably distinguished due to detector granularity are merged together