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Edge: Low Latency

• Compute closer to sensor

• Avoid large latency of sending to servers

• Examples: Drones, Self-driving cars

Where are DNN Models deployed?
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Datacenter: High Throughput

• Offloading computation to server

• Examples: Google Translate, ChatGPT

Where are DNN Models deployed?
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- Hardware is customized for a 

specific CNN Model

- All layers of the CNN Model are 

pipelined together

(FINN, HLS4ML, fpgaConvNet)
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CNN Accelerator Streaming Architecture

github.com/AlexMontgomerie/fpgaconvnet-hls
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iDSL Research

DSE Optimization
(FPL 2022)

Model Sparsity
(FPL 2023)

Power Consumption
(FPT 2019, ASP-DAC 2021)

Model 
Compression

(FPT 2021, FPL 2023)

Early Exit 
Networks
(FCCM 2023)

3D CNNs
(ASAP 2023, 

FPL 2023, FCCM 2023)

TinyML
(MLPerf Tiny 1.1)
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Sliding Window Vector Dot Accumulate

Convolution Building Blocks
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Vector Dot

Convolution Building Blocks
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- Dot-product between feature-map and weight windows
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Activation Sparsity in CNN Models

- Up to 80% of values in the network are 

zero on average

- Can reach 95% for feature-maps 

within the network

- A lot of multiplying by zero

- Result of ReLU

operations in the network
S. Cao et al., "SeerNet: Predicting Convolutional Neural Network 

Feature-Map Sparsity Through Low-Bit Quantization," 2019
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How do we exploit this?

- Most operations are zero times something, which is just zero

- Arithmetic circuit is only multiply and addition

- The cost of multipliers is much greater than adders

- Let’s use Multipliers more efficiently!
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Vector Dot Product Engine Non-Zero Value

Zero Value

- Initiation interval of 1

- 4 multipliers

- Only 1 Non-Zero multiplication each cycle

- 3 DSPs doing nothing!
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Vector Dot Product Engine - Alternative

- Initiation interval of 4

- 1 multiplier

- Only 1 Non-zero multiplication every 4 cycles

- Still inefficient use of the DSP
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Sparse RR Arbiter Vector Dot Product Engine

NZC Non-Zero Check

- Initiation interval of 1

- 1 multiplier

- Full DSP occupancy!

- (extra overheads for Non-Zero Checking)
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Sparse Crossbar Vector Dot Product Engine
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We can generalize this for any M 

inputs to N multipliers using a sparse 

crossbar instead.
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Speed-up

(compared to baseline fpgaConvNet)

• Performance increases with sparsity
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How we make it even faster (without much effort)?

Post-training ReLU-based sparsification! 
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ReLU Sparsification in CNN Models

𝑦 = max(0, 𝑥)
𝑦 = ቊ

𝑥, 𝑥 ≥ β
0, 𝑥 < β
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β1 = 0

β2 = 0

β3 = 0

Uniformly increasing threshold for all layers
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β1 = 0.01

β2 = 0.01

β3 = 0.01

Uniformly increasing threshold for all layers
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β1 = 0.02

β2 = 0.02

β3 = 0.02

Uniformly increasing threshold for all layers
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Uniformly increasing threshold for all layers
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How can we mitigate the accuracy loss?

Throughput depends on the latency of the slowest node
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β1 = 0

β2 = 0

β3 = 0

Hardware-Aware Thresholding
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β1 = 0.01

β2 = 0

β3 = 0

Hardware-Aware Thresholding
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β1 = 0.01

β2 = 0.01

β3 = 0

Hardware-Aware Thresholding
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β1 = 0.02

β2 = 0.01

β3 = 0

Hardware-Aware Thresholding
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β1 = 0.02

β2 = 0.01

β3 = 0.01

Hardware-Aware Thresholding
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β1 = 0.02

β2 = 0.02

β3 = 0.01

Hardware-Aware Thresholding
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Hardware-Aware ReLU Sparsification in CNN Models 
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Evaluation

• Iteratively pushing the slowest node’s 

sparsity provides more speedup for the 

same accuracy loss
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Conclusion

Thank you for listening!

ka720@ic.ac.uk
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fpgaConvNet Website
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