

1. Classification

with boosted decision trees

2. Regression

with deep boosted decision trees

3. Anomaly detection with decision tree-based autoencoder

L→ https://indico.cern.ch/e/1283970/contributions/5554363/ Lightning talk by Steve Roche

Fast Machine Learning for Science September 25, 2023 https://indico.cern.ch/e/1283970/contributions/5554356/

Classification

Hong et al., JINST **16**, P08016 (2021)

http://doi.org/10.1088/1748-0221/16/08/P08016

inst	Published by IOP Publishing for Sissa Medialab		linst
J	RECEIVED: April 9, 2021 Accepted: June 29, 2021 Published: August 4, 2021		
Nanosecond machine lea boosted decision trees in	rning event classification with FPGA for high energy physics	2021	Nanosecond boosted dec
T.M. Hong.* B.T. Carlson, B.R. Eubanks.	S.T. Racz. S.T. Roche, J. Stelzer and D.C. Stumpp		B.T. Carlson, ^{a,b} Q. B
Department of Physics and Astronomy, Univ 100 Allen Hall, 3941 O'Hara St., Pittsburgh E-mail: tmhong@pitt.edu	ersity of Pittsburgh, PA 15260, U.S.A.	JIN	^a Department of Physic 955 La Paz Road, Sa ^b Department of Physic 100 Allen Hall, 3941
ABSTRACT: We present a novel implementati intelligence method called boosted decision The firmware implementation of binary cla depth of 4 using four input variables gives speed from 100 to 320 MHz in our setup. BDT layout and reconfiguring its paramet a range from 0.01% to 0.2% in our setup, implementation. Our intended user is an ex- energy physics experiments or anyone that event classification. Two problems from f electrons vs. photons and in the selection rejection of the multijet processes. KEYWORDS: Digital electronic circuits; Trig and software); Data reduction methods	ion of classification using the machine learning/artificial trees (BDT) on field programmable gate arrays (FPGA). assification requiring 100 training trees with a maximum a latency value of about 10 ns, independent of the clock The low timing values are achieved by restructuring the ers. The FPGA resource utilization is also kept low at A software package called FWXMACHINA achieves this pert in custom electronics-based trigger systems in high needs decisions at the lowest latency values for real-time igh energy physics are considered, in the separation of of vector boson fusion-produced Higgs bosons vs. the gger algorithms; Trigger concepts and systems (hardware	ST 16 P08016	<i>E-mail:</i> tmhong@pi ABSTRACT: We prese called boosted decis (FPGA). The softwa paths that allows for ' new optimization sch timal physics results of proton collisions ' transverse momentum experiments, with a s the firmware perform eight input variables' speed, and <i>O</i> (0.1)% KEYWORDS: Data red cepts and systems (ht
ArXiv ePrint: 2104.03408			ArXiv ePrint: 2207
*Corresponding author.			*Corresponding autho
© 2021 IOP Publishing Ltd and Sissa Medialab	https://doi.org/10.1088/1748-0221/16/08/P08016		© 2022 IOP Publishing Ltd

PUBLISHED BY IOP PUBLISHING FOR SISSA MEDIALAB RECEIVED: July 13, 2022 ACCEPTED: August 23, 2022 PUBLISHED: September 27, 2022

Nanosecond machine learning regression with	1 deep
boosted decision trees in FPGA for high energ	y physics
B.T. Carlson, a,b Q. Bayer, b T.M. Hong b,* and S.T. Roche b	
^a Department of Physics and Engineering, Westmont College, 955 La Paz Road, Santa Barbara, CA 93108, U.S.A.	
^b Department of Physics and Astronomy, University of Pittsburgh, 100 Allen Hall, 3941 O'Hara St., Pittsburgh, PA 15260, U.S.A.	
E-mail: tmhong@pitt.edu	

ent a novel application of the machine learning / artificial intelligence method ion trees to estimate physical quantities on field programmable gate arrays re package FWXMACHINA features a new architecture called parallel decision deep decision trees with arbitrary number of input variables. It also features a neme to use different numbers of bits for each input variable, which produces opand ultraefficient FPGA resource utilization. Problems in high energy physics at the Large Hadron Collider (LHC) are considered. Estimation of missing $m(E_T^{miss})$ at the first level trigger system at the High Luminosity LHC (HL-LHC) simplified detector modeled by Delphes, is used to benchmark and characterize nance. The firmware implementation with a maximum depth of up to 10 using of 16-bit precision gives a latency value of O(10) ns, independent of the clock of the available FPGA resources without using digital signal processors.

duction methods; Digital electronic circuits; Trigger algorithms; Trigger conardware and software)

05602

and Sissa Medialab

https://doi.org/10.1088/1748-0221/17/09/P09039

Carlson et al., JINST 17, P09039 (2022) http://doi.org/10.1088/1748-0221/17/09/P09039

N

 \bigcirc \mathbb{N}

N

N N

н

-

Р

 \bigcirc

6

 \bigcirc

ω

6

2023

Apr

[-

[hep-ex]

arXiv:2304.03836v1

Roche et al., submitted for publication https://arxiv.org/abs/2304.03836

Regression + deep Anomaly detection

PITT-PACC-2311

Nanosecond anomaly detection with decision trees for high energy physics and real-time application to exotic Higgs decays

S.T. Roche^{a,b}, Q. Bayer^b, B.T. Carlson^{b,c}, W.C. Ouligian^b, P. Serhiayenka^b, J. Stelzer^b, and T.M. Hong^{*b}

^aSchool of Medicine, Saint Louis University ^bDepartment of Physics and Astronomy, University of Pittsburgh ^cDepartment of Physics and Engineering, Westmont College

April 11, 2023

Abstract

We present a novel implementation of the artificial intelligence autoencoding algorithm, used as an ultrafast and ultraefficient anomaly detector, built with a forest of deep decision trees on FPGA, field programmable gate arrays. Scenarios at the Large Hadron Collider at CERN are considered, for which the autoencoder is trained using known physical processes of the Standard Model. The design is then deployed in real-time trigger systems for anomaly detection of new unknown physical processes, such as the detection of exotic Higgs decays, on events that fail conventional threshold-based algorithms. The inference is made within a latency value of 25 ns, the time between successive collisions at the Large Hadron Collider, at percent-level resource usage. Our method offers anomaly detection at the lowest latency values for edge AI users with tight resource constraints.

Keywords: Data processing methods, Data reduction methods, Digital electronic circuits, Trigger algorithms, and Trigger concepts and systems (hardware and software).

*Corresponding author, tmhong@pitt.edu

Motivation

Why fast Why small ML on FPGA Decision Trees vs. Neural Networks

FPGA implementation

Parallelize cuts
Parallelize terminal bins
Tree-based autoencoder

Classification of VBF Higgs vs. multijets Deep regression of missing energy Anomaly detection

→ Lightning talk by S. Roche https://indico.cern.ch/e/1283970/contributions/5554363/

Results

Where to find more info http://fwx.pitt.edu

L1 Trigger

Design Custom boards w/, e.g., Xilinx Virtex US+ Latency Fixed at O(1) μs ML Need fast firmware

• FWX

Latency O(10) ns FIFO

Note ML latency must fit between various preand post-processing, e.g., composite object creation from raw data

L0 Trigger

Design Custom boards w/, e.g., Xilinx VP 1502

- 2M LUT, 7k DSP Avail.
- ML Need efficient fw

FWX

- Size 1%-level footprint
- Note ML footprint must fit among various preand post-processing, e.g., composite object creation from raw data

¹ Denby, <u>Comp. Phys. Comm. 49-3, 429 (1988)</u>
² Duarte et al., <u>J. Instrum. 13, P07027 (2018)</u>
³ CMS Collaboration, <u>Phys. Lett. B 716, 31 (2012)</u>
⁴ Summers et al., <u>J. Instrum 15, P02056 (2020)</u>
⁵ Hong et al., <u>J. Instrum. 16, P08016 (2021)</u>
⁶ Carlson et al., <u>J. Instrum. 17, P09039 (2022)</u>

Neural Network

Popular Depth Score Been around HEP since the 80s¹ Challenging, so ~3 on FPGA² $y = \Theta(M \cdot x + b)$

Activation Multiplication

Decision Tree

Popular Depth Score Discovered the Higgs!³ Challenging, so 4 to 8 on FPGA^{4,5,6} $y = \Theta(x < \text{threshold})$

• FWX Decision Tree

PhysicsComparable results vs. NN on FPGAFloat / fixedBit integer \rightarrow bit shifts \rightarrow efficientOptimizedParallelize \rightarrow one step \rightarrow low latency

Autoencoder

Design	Goal is to reproduce input
Challenge	Not many training methods
Re-use	FWX engine + distance

MNIST dataset for data reconstruction

Tree-based autoencoder

For anomaly detection

Firmware block diagram

FWXAE

Benefit Latent data is retrievable, but can skip if speed desired → Direct input-to-output

Training

Results

- We created in-house method based on input-space density estimation by sample median → lightning talk by S. Roche

Comparison vs. hls4ml, see → lightning talk by S. Roche

Hong et al., JINST 16, P08016 (2021)

Events / 20 GeV (unit norr

Interval

1 clock tick

1 clock tick

1 clock tick

² Hong, PIKIMO 11, https://indico.cern.ch/event/1091676/contributions/4639362/

 \equiv

Webpage http://fwx.pitt.edu

• • •	X, f	wX		×	+				\sim
\leftarrow \rightarrow	C	0 8 =	º https:	//www.fwx	pitt.edu	80%	☆	\checkmark	එ
	Unive Pitt	rsity of sburgh	fwXm	achina I	Project				
	FW	Machina	•						
,	Welcor	ne!							
	Information regarding the fwX project will be available on this page. This project is developed by members of the Hong Group in the Department of Physics and Astronomy and collaborators.								
,	What is fwX								
i	A python p intelligence	oackage to desi e algorithms o	ign nanos n FPGA fo	econd imp r use in hig	lementation of machi gh energy physics.	ne learnii	ng / art	ificial	
,	Where	to find in	forma	tion					
	• Docu 。 。 • Talks	mentation Paper 1: <i>Class</i> JINST 16 P080 Paper 2: <i>Regro</i> Journal of Inst [2207.05602] Paper 3: <i>Anon</i> [2207.05602] / Posters	<i>ification v</i> 16 (2021) <i>ession wit</i> rumentat <i>naly detec</i>	vith flat tre available o h deep end ion JINST 1	e architecture in the J n the arXiv at [2104.0 d-to-end decision tree 7 P09039 (2022) avail decision tree-based au	ournal of 3408] <i>architect</i> able on a <i>toencode</i>	Instru ture in rXiv at er on th	mentation the ne arXiv at	
	0	Date	Туре	Speaker	Venue	Link	Title Sum	/ mary	
os://www.fw	x.pitt.edu	2021/05/24	Talk	T.M. Hong	Phenomenology Symposium, Pheno 2021	indico	Com to his boos decis	parisons s4ml's ted ion tree	
		1							

htt

Code repository Firmware testbench gitlab.com/PittHongGroup/fwX/ d-scholarship.pitt.edu/44431/

. . .

Xilinx inputs for nanosecond and X +

$\leftarrow \rightarrow C$ 🔘 🍐 d-scholarship.pitt.edu/44431/ 80% 🟠 ± ≦ ≡ University of Pittsburgh ULS I CONTACT US D-Scholarship Xilinx inputs for nanosecond anomaly My Account detection with decision trees Hong, Tae Min and Serhiayenka, Pavel (2023) Xilinx inputs for nanosecond anomaly detection with de trees. [Dataset] (Unpublished) Search Archive (ZIP) <u>Zip</u> Download (3MB) Abstract Files include the Xilinx IP core for xvcu9p and a generic testbench with test vectors for the 3-variable Browse autoencoder. Share Citation/Export: Select format... atest Additi Social Networking: Share | Details Information Item Type: Dataset Status: Unpublished Main Page Getting Started Creators / Authors Submitting Your ETD Creators Pitt Username ORCID Email Repository Policies Hong, Tae Min tmhong@pitt.edu tmhong 0000-0001-7834-328X About Serhiavenka, Pavel pas218@pitt.edu pas218 FAQ Help Date: April 2023 Schools and Programs: Dietrich School of Arts and Sciences > Physics

chools and Programs: Dietrich School of Arts and Sciences > Physic Date Deposited: 17 Apr 2023 16:38 Last Modified: 17 Apr 2023 16:38 URI: http://d-scholarship.pitt.edu/id/eprint/44431

Metrics

Monthly Views for the past 3 years

 \sim