
Stephen Roche

1

on FPGA for L1 trigger

1. Classification with boosted decision trees

2. Regression with deep boosted decision trees

3. Anomaly detection with decision tree-based autoencoder
↳ https://indico.cern.ch/e/1283970/contributions/5554363/

Lightning talk by Steve Roche

Fast Machine Learning for Science 
September 25, 2023 

https://indico.cern.ch/e/1283970/contributions/5554356/ 

Tae Min Hong* Ben Carlson

https://indico.cern.ch/event/1283970/contributions/5554363/
https://indico.cern.ch/event/1283970/contributions/5554356/


PITT-PACC-2311

Nanosecond anomaly detection with decision trees for high

energy physics and real-time application to exotic Higgs

decays

S.T. Rochea,b, Q. Bayerb, B.T. Carlsonb,c, W.C. Ouligianb,

P. Serhiayenkab, J. Stelzerb, and T.M. Hong�b

aSchool of Medicine, Saint Louis University
bDepartment of Physics and Astronomy, University of Pittsburgh

cDepartment of Physics and Engineering, Westmont College

April 11, 2023

Abstract

We present a novel implementation of the artificial intelligence autoencoding algorithm, used
as an ultrafast and ultrae�cient anomaly detector, built with a forest of deep decision trees on
FPGA, field programmable gate arrays. Scenarios at the Large Hadron Collider at CERN are
considered, for which the autoencoder is trained using known physical processes of the Standard
Model. The design is then deployed in real-time trigger systems for anomaly detection of new
unknown physical processes, such as the detection of exotic Higgs decays, on events that fail
conventional threshold-based algorithms. The inference is made within a latency value of 25 ns,
the time between successive collisions at the Large Hadron Collider, at percent-level resource
usage. Our method o�ers anomaly detection at the lowest latency values for edge AI users with
tight resource constraints.

Keywords: Data processing methods, Data reduction methods, Digital electronic circuits, Trigger
algorithms, and Trigger concepts and systems (hardware and software).
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A�������: We present a novel application of the machine learning / artificial intelligence method
called boosted decision trees to estimate physical quantities on field programmable gate arrays
(FPGA). The software package fwXmachina features a new architecture called parallel decision
paths that allows for deep decision trees with arbitrary number of input variables. It also features a
new optimization scheme to use di�erent numbers of bits for each input variable, which produces op-
timal physics results and ultrae�cient FPGA resource utilization. Problems in high energy physics
of proton collisions at the Large Hadron Collider (LHC) are considered. Estimation of missing
transverse momentum (⇢miss

T ) at the first level trigger system at the High Luminosity LHC (HL-LHC)
experiments, with a simplified detector modeled by Delphes, is used to benchmark and characterize
the firmware performance. The firmware implementation with a maximum depth of up to 10 using
eight input variables of 16-bit precision gives a latency value of O(10) ns, independent of the clock
speed, and O(0.1)% of the available FPGA resources without using digital signal processors.
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A�������: We present a novel implementation of classification using the machine learning/artificial
intelligence method called boosted decision trees (BDT) on field programmable gate arrays (FPGA).
The firmware implementation of binary classification requiring 100 training trees with a maximum
depth of 4 using four input variables gives a latency value of about 10 ns, independent of the clock
speed from 100 to 320 MHz in our setup. The low timing values are achieved by restructuring the
BDT layout and reconfiguring its parameters. The FPGA resource utilization is also kept low at
a range from 0.01% to 0.2% in our setup. A software package called fwXmachina achieves this
implementation. Our intended user is an expert in custom electronics-based trigger systems in high
energy physics experiments or anyone that needs decisions at the lowest latency values for real-time
event classification. Two problems from high energy physics are considered, in the separation of
electrons vs. photons and in the selection of vector boson fusion-produced Higgs bosons vs. the
rejection of the multÚet processes.

K�������: Digital electronic circuits; Trigger algorithms; Trigger concepts and systems (hardware
and software); Data reduction methods

A�X�� �P����: 2104.03408

⇤Corresponding author.

c� 2021 IOP Publishing Ltd and Sissa Medialab https://doi.org/10.1088/1748-0221/16/08/P08016

Carlson et al., JINST 17, P09039 (2022)
http://doi.org/10.1088/1748-0221/17/09/P09039

Hong et al., JINST 16, P08016 (2021)
http://doi.org/10.1088/1748-0221/16/08/P08016

Roche et al., submitted for publication
https://arxiv.org/abs/2304.03836 

Classification Regression + deep Anomaly detection

http://doi.org/10.1088/1748-0221/17/09/P09039
http://doi.org/10.1088/1748-0221/16/08/P08016
https://arxiv.org/abs/2304.03836


3

Outline

• Motivation
Why fast
Why small
ML on FPGA .................................... Decision Trees vs. Neural Networks

• FPGA implementation
Parallelize cuts ................................ Classification of VBF Higgs vs. multijets
Parallelize terminal bins .................. Deep regression of missing energy
Tree-based autoencoder ................. Anomaly detection

↳ Lightning talk by S. Roche
https://indico.cern.ch/e/1283970/contributions/5554363/

• Results
Physics scenarios ........................... Topics listed above
Comparisons ................................... vs. hls4ml family of tools
Where to find more info ................... http://fwx.pitt.edu

https://indico.cern.ch/event/1283970/contributions/5554363/
http://fwx.pitt.edu


Why fast
Dataflow at LHC

Level-1 (L1) 
Trigger

Detector 
Read-Out

Partial data

L1 Accept

DataFlowHigh Level 
Trigger (HLT)

HLT Accept

Event data

CPU x 40k

custom FPGA boards

• L1 Trigger
Design Custom boards w/, 

e.g., Xilinx Virtex US+
LatencyFixed at O(1) μs
ML Need fast firmware

• FWX
LatencyO(10) ns FIFO
Note ML latency must fit

between various pre- 
and post-processing,
e.g., composite object 
creation from raw data

4

Collision 
rate

Data 
flow

40 MHz = 60 
TB
sec

100 kHz = 150 
GB
sec

1.5 kHz = 2 
GB
sec

Modeled after https://cern.ch/twiki/pub/AtlasPublic/ApprovedPlotsDAQ/tdaq-run3-schematic-withoutFTK.pdf 

= 1.5 MBEvt 
size

https://twiki.cern.ch/twiki/pub/AtlasPublic/ApprovedPlotsDAQ/tdaq-run3-schematic-withoutFTK.pdf
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Why small footprint
ATLAS for HL-LHC (2026)

• L0 Trigger
Design Custom boards w/, 

e.g., Xilinx VP 1502
Avail. 2M LUT, 7k DSP 
ML Need efficient fw

Diagram from Tang et al., IEEE Trans. on Nucl. Sci. 70, 9 (2023)

Level-0 (L0) 
Trigger

Detector 
Read-Out

More partial data

L0 Accept

DataFlowHigh Level 
Trigger (HLT)

HLT Accept

Heterogenous 
computing

• FWX
Size 1%-level footprint 
Note ML footprint must fit 

among various pre- 
and post-processing,
e.g., composite object 
creation from raw data

https://doi.org/10.1109/TNS.2023.3302158
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3. resource usage, expressed as the following FPGA resource categories: onboard FPGA
memory (BRAM), digital signal processing (arithmetic) blocks (DSPs), and registers and
programmable logic (flip-flops, or FFs, and lookup tables, or LUTs).

The hls4ml tool has a number of configurable parameters which can help the user explore and
customize the space of latency, initiation interval, and resource usage tradeo�s for their application.
Because every application is di�erent, the goal of the hls4ml package is to empower the user to
perform this optimization through automated neural network translation and FPGA design iteration.
In practice, the time required to perform hls4ml translation of a neural netowrk is much shorter
(minutes to hours) than a designing a specific neural network architecture for an FPGA, and may be
used to rapidly prototype machine learning algorithms without dedicated engineering support for
the FPGA implementation. For physicists, this makes designing physics algorithms for the trigger
or DAQ significantly more accessible and e�cient, thus has the potential for the “time to physics”
to be greatly reduced.

We first introduce some terminology and concepts for the inference of deep, fully connected
neural networks. Consider the network illustrated in figure 2 with M layers, where each layer m

has Nm neurons. The input layer has N1 input neurons and the output layer has NM output neurons.
The vector of neuron output values at each layer are denoted by xm. For the m

th fully connected
layer (m > 1),

xm = gm
�
Wm,m�1xm�1 + bm

�
, (2.1)

where Wm,m�1 is the matrix of weights between layers m � 1 and m, bm are the bias values, and gm
is the activation function for layer m. The size of matrix Wm,m�1 is Nm ⇥ Nm�1 and thus the number
of multiplications required to compute the neuron values of layer m is implicitly also Nm ⇥ Nm�1.

input layer

output layer

M hidden layers

N1

NM

layer m

Nm

Figure 2. A cartoon of a deep, fully connected neural network illustrating the description conventions used
in the text.
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• Neural Network 
Popular Been around HEP since the 80s1

Depth Challenging, so ~3 on FPGA2

Score y = Θ(𝕄 ⋅ x + b)
Activation Multiplication

• Decision Tree
Popular Discovered the Higgs!3
Depth Challenging, so 4 to 8 on FPGA4,5,6

Score y = Θ(x < threshold)

6

ML on FPGA
NN vs. DT

start

O1O0

O01O00

Root node

Depth i

Depth ii

Conventional tree structure

qi: xa ≥ ci

ci

xa

xb

cii

O00

O1

O01

Binning is sequential

start

O10

= O1

O01O00

Root node

Depth i

Flattened tree

xa ≥ ci

xb < cii

ci

xa

xb

cii

O00

O11O01

O10

O11

= O1

xa < ci

xb ≥ cii

fa
ls

e

xa ≥ ci

xb ≥ cii

xa < ci

xb < cii

Binning in each variable is
independent of other variables

qii: xb ≥ cii

tru
e

fa
ls

e tru
e

qi:

qii:

2d plane: xa vs. xb

2d plane: xa vs. xb
• FWX Decision Tree

Physics Comparable results vs. NN on FPGA
Float / fixed Bit integer → bit shifts → efficient
Optimized Parallelize → one step→ low latency

ComparisonStep fn

1 Denby, Comp. Phys. Comm. 49-3, 429 (1988)
2 Duarte et al., J. Instrum. 13, P07027 (2018)
3 CMS Collaboration, Phys. Lett. B 716, 31 (2012) 
4 Summers et al., J. Instrum 15, P02056 (2020)
5 Hong et al., J. Instrum. 16, P08016 (2021)
6 Carlson et al., J. Instrum. 17, P09039 (2022)

https://doi.org/10.1016/0010-4655(88)90004-5
https://dx.doi.org/10.1088/1748-0221/13/07/P07027
http://doi.org/10.1016/j.physletb.2012.08.021
https://doi.org/10.1088/1748-0221/15/05/p05026
https://dx.doi.org/10.1088/1748-0221/16/08/P08016
https://doi.org/10.1088/1748-0221/17/09/P09039
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Design v1: Parallelize cuts
2 variable example

Standard 
decision tree

start

O1

O01O00

Root node

Depth i

Depth ii

qi: xa ≥ ci

ci

xa

xb

cii

O00

O1

O01

fa
ls

e

qii: xb ≥ cii

tru
e

fa
ls

e tru
e

ci

start

O10

= O1

O01O00

Root node

Depth i

Flattened tree

xa ≥ ci

xb < cii

ci

xa

xb

cii

O00

O11O01

O10

O11

= O1

xa < ci

xb ≥ cii

xa ≥ ci

xb ≥ cii

xa < ci

xb < cii

qi:

qii:

2d plane: xa vs. xb
• General

Training Use TMVA or equivalent
Design Threshold comparisons
Challenge Evaluate layers sequentially

FWX design 
v1

• FWXv1
Key design Evaluate cuts in parallel
Benefit Each cut is indpd’t 

→ Bin search on a grid 
→ Bit shift to speed-up

Limitations Does not scale well w/
tree depth & # variables

Follow-up Led to v2 design

ci

start

O10

= O1

O01O00

Root node

Depth i

Flattened tree

xa ≥ ci

xb < cii

ci

xa

xb

cii

O00

O11O01

O10

O11

= O1

xa < ci

xb ≥ cii

xa ≥ ci

xb ≥ cii

xa < ci

xb < cii

qi:

qii:

2d plane: xa vs. xb

start

O1

O01O00

Root node

Depth i

Depth ii

qi: xa ≥ ci

ci

xa

xb

cii

O00

O1

O01

fa
ls

e

qii: xb ≥ cii

tru
e

fa
ls

e tru
e

Hong et al., JINST 16, P08016 (2021)

http://doi.org/10.1088/1748-0221/16/08/P08016
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Design v2: Parallelize terminal bins
Go deeper from 4 → 8

Standard 
decision tree

FWX design 
v2

Nanosecond ML regression with deep BDT in FPGA for HEP

b11b10

b2qii: xb > 23

qiii: xa > 40b0

Decision tree structure

Destination bin Depth i Depth ii Depth iii Decision path Path #

b0 not(qi) not(qii) N/A not(qi) and not(qii) 0

b2 qi N/A N/A qi 1

b10 not(qi) qii not(qiii) not(qi) and qii and not(qiii) 2

b11 not(qi) qii qiii not(qi) and qii and qiii 3

Worked example

55 xa

xb

23

b0

b2

b10

2d plane: xa vs. xb

b11

40

Decision paths

Path 0

Path 1

Path 2

Path 3

qi: xa > 55

Figure 2: Deep decision tree with parallel decision path (PDP) structure. An example is shown in the leftmost
diagram for a decision tree using two variables (G0, G1) with a depth of 3. The equivalent representation in
the two-dimensional G0 vs. G1 space is given in the middle. The PDP perspective is given on the right. The
table at the bottom lists the logical comparisons per PDP.
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Figure 3: Average number of bins per tree h#18=i vs. maximum tree depth ⇡. The right vertical axis shows
the h#bini fraction with respect to the exponential scaling of 2⇡ to compare the points at ⇡ = 10.
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• FWXv2
Key design Evaluate decision paths 
Benefit Softer scaling vs 2D

Nanosecond ML regression with deep BDT in FPGA for HEP

b11b10

b2qii: xb > 23

qiii: xa > 40b0

Decision tree structure

Destination bin Depth i Depth ii Depth iii Decision path Path #

b0 not(qi) not(qii) N/A not(qi) and not(qii) 0

b2 qi N/A N/A qi 1

b10 not(qi) qii not(qiii) not(qi) and qii and not(qiii) 2

b11 not(qi) qii qiii not(qi) and qii and qiii 3

Worked example

55 xa

xb

23

b0

b2

b10

2d plane: xa vs. xb

b11

40

Decision paths

Path 0

Path 1

Path 2

Path 3

qi: xa > 55

Figure 2: Deep decision tree with parallel decision path (PDP) structure. An example is shown in the leftmost
diagram for a decision tree using two variables (G0, G1) with a depth of 3. The equivalent representation in
the two-dimensional G0 vs. G1 space is given in the middle. The PDP perspective is given on the right. The
table at the bottom lists the logical comparisons per PDP.
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Figure 3: Average number of bins per tree h#18=i vs. maximum tree depth ⇡. The right vertical axis shows
the h#bini fraction with respect to the exponential scaling of 2⇡ to compare the points at ⇡ = 10.
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• Improve FWXv1
Challenge Does not scale well w/

tree depth & # variables
Cut redundancy 2D

Nanosecond ML regression with deep BDT in FPGA for HEP

b11b10

b2qii: xb > 23

qiii: xa > 40b0

Decision tree structure

Destination bin Depth i Depth ii Depth iii Decision path Path #

b0 not(qi) not(qii) N/A not(qi) and not(qii) 0

b2 qi N/A N/A qi 1

b10 not(qi) qii not(qiii) not(qi) and qii and not(qiii) 2

b11 not(qi) qii qiii not(qi) and qii and qiii 3

Worked example
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2d plane: xa vs. xb

b11
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Decision paths

Path 0

Path 1

Path 2
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Figure 2: Deep decision tree with parallel decision path (PDP) structure. An example is shown in the leftmost
diagram for a decision tree using two variables (G0, G1) with a depth of 3. The equivalent representation in
the two-dimensional G0 vs. G1 space is given in the middle. The PDP perspective is given on the right. The
table at the bottom lists the logical comparisons per PDP.
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Nanosecond ML regression with deep BDT in FPGA for HEP
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b2qii: xb > 23

qiii: xa > 40b0

Decision tree structure

Destination bin Depth i Depth ii Depth iii Decision path Path #

b0 not(qi) not(qii) N/A not(qi) and not(qii) 0

b2 qi N/A N/A qi 1

b10 not(qi) qii not(qiii) not(qi) and qii and not(qiii) 2

b11 not(qi) qii qiii not(qi) and qii and qiii 3
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Figure 2: Deep decision tree with parallel decision path (PDP) structure. An example is shown in the leftmost
diagram for a decision tree using two variables (G0, G1) with a depth of 3. The equivalent representation in
the two-dimensional G0 vs. G1 space is given in the middle. The PDP perspective is given on the right. The
table at the bottom lists the logical comparisons per PDP.
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Nanosecond ML regression with deep BDT in FPGA for HEP
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Figure 11: Actual LUT usage (left) and actual FF usage (right) as a function of the maximum depth. Absolute
usage is shown on the left axis and percentage of our FPGA resources is shown on the right axis, both using
the setup in table 3.
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Figure 12: Actual DSP usage (left) and actual BRAM usage (right) as a function of the maximum depth.
Absolute usage is shown on the left axis and percentage of our FPGA resources is shown on the right axis,
both using the setup in table 3. No DSP usage is seen.
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diagram for a decision tree using two variables (G0, G1) with a depth of 3. The equivalent representation in
the two-dimensional G0 vs. G1 space is given in the middle. The PDP perspective is given on the right. The
table at the bottom lists the logical comparisons per PDP.
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MNIST dataset
for data reconstruction

9

Tree-based autoencoder
For anomaly detection

• Autoencoder
Design Goal is to reproduce input
Challenge Not many training methods
Re-use FWX engine + distance

• FWXAE
Benefit Latent data is retrievable, 

but can skip if speed desired
→ Direct input-to-output

Training We created in-house method
based on input-space density
estimation by sample median
↳ lightning talk by S. Roche 

Results Comparison vs. hls4ml, see
↳ lightning talk by S. Roche

Data outData in
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Firmware block diagram 
shows the latent layer that can be skipped or not
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Roche et al., https://arxiv.org/abs/2304.03836 
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Results v1
VBF Higgs vs. Multijets

• Setup
Goal Classification
Physics VBF Higgs vs. Multijet
Inputs 5 variables re: 2 VBF jets
ML BDT, 100 trees, 4 deep
Training VBF Higgs → invisible
Test VBF Higgs → 4b, works!

• FWXV1
Physics 2x better vs. ATLAS-inspired cuts
Timing Latency of 16 ns (5 tick @330 MHz)

Interval of   3 ns (1 tick @330 MHz)
FPGA usage 1% level or smaller

# bits for inputs 8

# bits for output 16

LUT 1%

Flip Flops ~ 0

BRAM 2%

DSP 0
Hong et al., JINST 16, P08016 (2021)

http://doi.org/10.1088/1748-0221/16/08/P08016


Nanosecond ML regression with deep BDT in FPGA for HEP

Table 1: List of variables for the ⇢miss
T estimation. The regression takes eight input variables and optimizes to

the target variable. The output is the result of the regression.

How used Variable Description
Target METtruth ⇢miss

T based on generator quantities due to, e.g., neutrinos
Input 1 METreco ⇢miss

T based on reconstructed objects, e.g., 4, `, W, jets 9
00 2 METtowers ⇢miss

T based on calorimeter towers
00 3 METtracks ⇢miss

T by Delphes based on charged tracks and neutral hadron
towers

00 4 METjets ⇢miss
T based on reconstructed hadronic jets

00 5 SETjets ⌃⇢T of reconstructed hadronic jets
00 6 dfwd-A Energy density for �4.9 < [ < �2.5
00 7 dbarrel Energy density for |[ | < 2.5
00 8 dfwd-B Energy density for 2.5 < [ < 4.9

Output OBDT ⇢miss
T estimation from the regression
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Figure 1: Input variable distributions. The reconstructed MET distributions (left) are given for background
process for various estimations that all peak around 30GeV and the signal process that is broader that all
peaks similarly at higher values. The truth MET distributions are also shown for the background process
that peaks at 0 and for the signal process that is similar to the reconstructed values. The reconstructed ⌃⇢T

distributions (right) are shown for the background process and the signal process.
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Results v2
Estimate MET

• Setup
Goal Regression
Physics Estimate MET at HL-LHC
Inputs 8 variables re: MET & rho
ML BDT, 10 trees, 8 deep
Training METtruth

• FWXV2
Physics Sharper turn-on curve
Timing Latency of 65 ns (21 tick @330 MHz)

Interval of   3 ns (1 tick @330 MHz)
FPGA usage 0.1% level or smaller

# bits for inputs 16

# bits for output 16

LUT 0.2%

Flip Flops 0.1%

BRAM 0.1%

DSP 0

Nanosecond ML regression with deep BDT in FPGA for HEP

In order to verify the performance of an alternate sample with non-zero METtruth with a larger
jet multiplicity, including jets in the central region unlike for VBF processes, we consider leptonic CC̄
decays in the right plot of figure 8. The same BDT trained on the merged sample of sample A1 and
B is used to evaluate sample A2 for CC̄. We see that that turn-on curve for the BDT is sharper than
the input MET variables.
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Figure 8: E�ciency turn-on curves for the VBF Higgs sample (left) and CC̄ samples (right) as signal on the
vertical axis and QCD multÚet for background on the horizontal axis. The signal e�ciency of the BDT is
improved for both VBF Higgs and CC̄ samples as signal, demonstrating that the regression is robust for a
wide range of topologies.The threshold corresponding to the operating point of background e�ciency of
Y⌫ = 10�3 is chosen. For each histogram a line is drawn between the data points as a visual guide.

Finally, we consider MET resolution. If the algorithm rejects more background events while
retaining a similar amount of signal events, the BDT regression is worth pursuing. We will see
that this is the case. The MET distribution for events without true ⇢miss

T , i.e., background events,
is shown in the left plot of figure 9. As the training sample includes background events without
true ⇢miss

T , these events tend to be reconstructed with low values of MET by the regression model,
as expected. To highlight the improved rejection, subset of events with non-zero reconstructed
MET, taken to be METtowers > 60GeV are selected. For this subset of events, the BDT estimate
outperforms the input MET variables for accurately estimating the null MET value.

The MET resolution for events with true ⇢miss
T , i.e., signal events, is shown in the right plot of

figure 9. For the subset of events with non-zero reconstructed MET in the range at which a MET cut
might be placed in a trigger system, taken here to be 150 < METtruth < 200GeV, the BDT estimate
performs comparably to the input MET variables.

We now discuss the trade-o� between physics and engineering performance. As can be seen in
figure 10 the area under the ROC curve (AUC) is plotted vs. maximum tree depth ⇡ and number of
bits for input variables.2 An AUC of 0.5 corresponds to the worst possible performance, while an

2AUC is defined to be the area under the curve when plotting Y( vs. Y⌫.

15

Carlson et al., JINST 17, P09039 (2022)

http://doi.org/10.1088/1748-0221/17/09/P09039


• Setup
Physics 4 variables for e vs. γ1 
FWX BDT 100 trees, 4 deep
hls4ml BDT    ” identical config for BDT
hls4ml NN Out-of-the-box config

• FWXv1
vs. hls4ml NN Comparable2

vs. hls4ml BDT Same (since identical config)
Resource < 1% for all methods
Latency FWX’s parallel + no

clocked operations
• FWXv2, FWXAE

v2 vs. all Need to do 
AE vs. hls4ml → lightning talk S. Roche

12

Comparisons
vs. hls4ml family of tools

FWX 
BDT v1

hls4ml 
NN

hls4ml 
conifer-BDT

# bits 
variable

 8  10, 5  10, 5 
LUT 0.06% 0.1% 0.3%
Flip Flops 0.01% 0.01% 0.1%
BRAM 0.1% 0.2% 0
DSP 0.03% 0.02% 0
Latency 10 ns 25 ns 47 ns
Interval 1 clock tick 1 clock tick 1 clock tick

1 Nachman et al., https://data.mendeley.com/datasets/kp3myh3v89/1
2 Hong, PIKIMO 11, https://indico.cern.ch/event/1091676/contributions/4639362/

http://dx.doi.org/10.17632/pvn3xc3wy5.1
https://indico.cern.ch/event/1091676/contributions/4639362/
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For more info
tmhong@pitt.edu

Webpage
http://fwx.pitt.edu

Code repository
gitlab.com/PittHongGroup/fwX/

Firmware testbench
d-scholarship.pitt.edu/44431/

mailto:tmhong@pitt.edu
http://fwx.pitt.edu
http://gitlab.com/PittHongGroup/fwX/
http://d-scholarship.pitt.edu/44431/

