fwXmachina: Anomaly detection with decision tree autoencoder on FPGA for L1 trigger

SAINT LOUIS UNIVERSITY

Stephen Roche* Ben Carlson Tae Min Hong 2304.03836 [hep-ex] Outline

- Autoencoder training
- Results
- Comparison to neural network

Fast Machine Learning for Science September 25, 2023

https://indico.cern.ch/e/1283970/contributions/5554363/

Autoencoders for anomaly detection

One anomaly detection method widely used is autoencoders

- Initially devised for data compression
- Use some method (often neural networks) to compress data into a latent space
- A second neural network can be used to take latent space \rightarrow reconstructed object
- If input looks like training data (background), good reconstruction. If not (anomaly), bad reconstruction

Decision tree autoencoders

Stephen Roche

We developed an algorithm that trains **decision trees** (rather than NNs) as autoencoder

- Can be evaluated on FPGA with fwXmachina framework (see slides from earlier overview talk by Tae Min Hong <u>https://indico.cern.ch/event/12</u> 83970/contributions/5554356/)
- Based on density of background points in parameter space
- The MNIST digits on the last slides were evaluated using decision tree AE
- See paper for training algorithm details

Evaluate on background & anomaly

Results: Exotic Higgs decay

Stephen Roche

Tested on dataset: $e^+e^-\mu^+\mu^-$ background vs two BSM $H \rightarrow aa \rightarrow e^+e^-\mu^+\mu^-$ signals with different Higgs and pseudoscalar (a) masses

Events (unit norm.)

- Only included events that wouldn't pass single lepton trigger
- Trained on background

Parameter	Value	
Variables	3 (m _{ee} , m _{μμ} , m _{eeμμ})	
Configuration	40 trees, depth 5	
Clock speed	320 MHz	
Latency	8 ticks (25 ns)	
Interval	1 tick (3.125 ns)	
FF	0.4%	
LUT	2.6%	
DSP	0.04%	
BRAM	0	

Can train with some signal contaminating the training set without significant decrease in performance

• Possibility to train on data rather than simulated samples

Comparison to NN autoencoder

Stephen Roche

Compare our tool to public results from hls4ml: [2108.03986]

- Both perform very well on problem using 56 variables, 4-vectors of physics objects for several signals vs SM cocktail background
- fwX has lower latency, hls4ml has less LUT usage on this problem

Signal	Area under ROC curve	
Dataset: [2107.02157]	fwX	hls4ml
LQ → bτ	0.93	0.92
$A \rightarrow 4I$	0.93	0.94
h→ ττ	0.85	0.81
h⁺ → τν	0.94	0.94

Parameter	fwX	hls4ml
Variables	56	56
Configuration	30 trees, depth 4	DNN VAE PTQ
Bit precision	8	8
Clock speed	200 MHz	200 MHz
Latency	30 ns	80 ns
Interval	5 ns	5 ns
FF	0.6%	0.5%
LUT	9.2%	3.0%
DSP	0.8%	1%
BRAM	0%	0.3%

Discussion & conclusions

We have developed a novel algorithm for training decision trees as autoencoders for anomaly detection

- Allows for interpretable anomaly detection
- Can be implemented on FPGA for ultra-low latency evaluation with fwX platform
- Different tools are available for FPGA-based anomaly detection, each with strengths and weaknesses

Anomaly detection at L1

- Signal-agnostic anomaly detection can enable the L1 trigger to save BSM events that would otherwise be discarded
- Important to ensure we are not discarding new physics!

Questions?

stephen.roche@health.slu.edu

Anomaly detection in HEP

- Anomaly detection (AD) is a topic in HEP of much current interest
- Lots of recent papers on methods (<u>HEP ML Living Review</u>); ATLAS analysis recently performed using anomaly detection [2307.01612]
- Can't analyze events you aren't saving! We want to apply AD methods at L1 trigger to ensure we're not discarding new physics

fwXmachina

- fwX framework evaluates BDTs on FPGA
- Classification [2104.03408], regression [2207.05602], now autoencoder [2304.03836] (this talk)
- See slides from earlier overview talk by Tae Min Hong <u>https://indico.cern.ch/event/1283970/contributions/5554356/</u>

Backup: LHC anomaly detection dataset

We test our method on the hls4ml dataset [2107.02157]

- Background: cocktail of SM processes including W → v I, Z
 → I I, multijet, and ttbar
- Signal: 4 different BSM decays
- Variables are p_T, η, φ of the 4 leading muons, 4 leading electrons, 10 leading jets, and MET
- Only events with at least one lepton > 23 GeV are included

