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Autoencoders for anomaly detection BECIEGEEE

One anomaly detection method widely used is autoencoders
e |nitially devised for data compression
e Use some method (often neural networks) to compress data into a latent space
e Asecond neural network can be used to take latent space = reconstructed object

e |f input looks like training data (background), good reconstruction. If not (anomaly), bad
reconstruction
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Figure: https://towardsdatascience.com/applied-
deep-learning-part-3-autoencoders-1c083af4d798




Decision tree autoencoders Stephen Roche

We developed an algorithm that
trains decision trees (rather than
NNs) as autoencoder
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e Based on density of background  «f
points in parameter space
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Results: Exotic Higgs decay

Tested on dataset: ete'u*u background vs two BSM H—>aa—>e*eu*u signals with different Higgs

and pseudoscalar (a) masses

e Only included events that wouldn’t pass single lepton trigger

e Trained on background
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performance

e Possibility to train on data rather than simulated samples




Comparison to NN autoencoder REZEELEEE

Compare our tool to public results from hls4ml: [2108.03986]

e Both perform very well on problem using 56 variables, 4-vectors of physics objects for
several signals vs SM cocktail background

e fwX has lower latency, hls4ml has less LUT usage on this problem
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Discussion & conclusions Stephen Roche

We have developed a novel algorithm for training decision trees as
autoencoders for anomaly detection

e Allows for interpretable anomaly detection

e Can be implemented on FPGA for ultra-low latency evaluation with fwX
platform

e Different tools are available for FPGA-based anomaly detection, each
with strengths and weaknesses

Anomaly detection at L1

e Signal-agnostic anomaly detection can enable the L1 trigger to save BSM
events that would otherwise be discarded

e Important to ensure we are not discarding new physics!

Questions?
stephen.roche@health.slu.edu
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Backup: Anomaly detection in HEP  BEEEILEEIE

Anomaly detection in HEP

e Anomaly detection (AD) is a topic in HEP of much current interest

e Lots of recent papers on methods (HEP ML Living Review); ATLAS
analysis recently performed using anomaly detection [2307.01612]

e Can’t analyze events you aren’t saving! We want to apply AD
methods at L1 trigger to ensure we’re not discarding new physics

fwXmachina
e fwX framework evaluates BDTs on FPGA

e Classification [2104.03408], regression [2207.05602], now
autoencoder [2304.03836] (this talk)

e See slides from earlier overview talk by Tae Min Hong
https://indico.cern.ch/event/1283970/contributions/5554356/



https://iml-wg.github.io/HEPML-LivingReview/#anomaly-detection
https://arxiv.org/pdf/2307.01612.pdf
https://arxiv.org/abs/2104.03408
https://arxiv.org/abs/2207.05602
https://arxiv.org/abs/2304.03836
https://indico.cern.ch/event/1283970/contributions/5554356/

Backup: LHC anomaly detection dataset BEEdEIEEIE

We test our method on the hls4dml
dataset [2107.02157]
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processes including W 2> v, Z
=2 | |, multijet, and ttbar

e Signal: 4 different BSM decays

Simulated events

Simulated events
=

Simulated events

e Variables are pg, n, ¢ of the 4
leading muons, 4 leading
electrons, 10 leading jets, and
MET

e Only events with at least one
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