Fast *b*-tagging at the high-level trigger of the ATLAS experiment

Fast Machine Learning for Science

https://indico.cern.ch/event/1283970/

25/09/23

Stefano Franchellucci on behalf of the ATLAS Collaboration

FACULTÉ DES SCIENCES

Motivation for "fast b-tagging"

- The identification of *b*-jets is necessary to trigger many interesting signatures
 - **Essential** for fully-hadronic final states of major interest $(H \rightarrow 2b, HH \rightarrow 4b, new \text{ physics...})$
- For the start of LHC Run 3, many novelties implemented in the high-level trigger (HLT)
 - Full detector acceptance (*Full scan*) tracking was a major upgrade for *b*-jet selections
 - Particle Flow (*PFlow*) reconstruction ⇒ stronger performances
 - CPU intensive \Rightarrow limited rate
- To fit *b*-jet selections in the trigger menu, within the CPU constraints, needed to reduce the input rate to *Full scan* tracking
 - **Fast** b-tagging \Rightarrow machine learning (ML) based low precision filter for jet tagging (*much faster* than tracking)

Fast ML for Science – 25/09/2023

S. Franchellucci – Fast *b*-tagging at ATLAS HLT

3

Preselection performance

- The preselection performances have been studied in Monte Carlo (MC) simulations, and then validated with Data
 - High efficiency w.r.t. full-trigger decision
 - Excellent agreement between data and MC
- The impact on physics of interest (*e.g.* HH→4b) is negligible while strongly downsizing background rates

Trigger selection	Preselection rejection	$HH \rightarrow b\bar{b}b\bar{b}$ relative
	factor on top of L1	trigger acceptance
L1 + HLT preselection (85% WP) +	~ 5	0.98
HLT selection $(HH \rightarrow b\bar{b}b\bar{b})$		
L1 + HLT preselection (80% WP) +	~ 10	0.96
HLT selection $(HH \rightarrow b\bar{b}b\bar{b})$		

Fast ML for Science – 25/09/2023

S. Franchellucci – Fast b-tagging at ATLAS HLT

Summary and outlook

- A fast *b*-tagging preselection in the ATLAS high-level trigger was implemented for the start of LHC Run 3 (<u>arXiv:2306.09738</u>)
- This method proved to be highly signal efficient, while being able to substantially decrease background rates
- This approach has high potential for application at the High Luminosity LHC
- Interesting times ahead!

Thank you for your attention!

DIPS architecture

- *fast b*-tagging uses **D**eep Impact **P**arameter **S**ets (DIPS) architecture (ATL-PHYS-PUB-2020-014)
- Neural Network (NN) that learns permutation invariant functions
 - Ordering of the inputs not relevant

F

- This type network features important advantages:
 - High flexibility, variable input size Ο
 - Very quick to train and very fast 0 inference

Fast ML for Science – 25/09/2023

S. Franchellucci – Fast b-tagging at ATLAS HLT

Preselection performance (ROC)

• Performances at jet-level of fast *b*-tagging (FASTDIPS) vs high-level tagger

Fast ML for Science – 25/09/2023

S. Franchellucci – Fast *b*-tagging at ATLAS HLT

CPU costs

- Track reconstruction in narrow regions of interest (Rol) for the preselection is ~ 4 times cheaper in terms of CPU time w.r.t. *Full Scan* tracking
- The working point was selected such that there is negligible impact on *b*-tagging performances