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Tau Identification

“Trigger tower”

Input to algorithm:
“Trigger object” (TOB)
    - A block of 3x3 trigger towers

ATLAS Trigger must identify taus for tau-based physics analyses
Challenging experimental signature of taus based on calorimeter energy depositions
Two candidate algorithms – heuristic, ML-based

Further details on ATLAS trigger: arXiv:2305.16623 Comprised of 99 “supercells”
 => 99 16-bit numbers

https://arxiv.org/abs/2305.16623
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Input Variables

Supercells located symmetrically around TOB axis

Variables must be:
- Quick to compute (max. 3 cycles)
- Light in resources

10 selected variables using SHAP ranking*

3-stage adder

1-stage adder2-stage adder

Tried different complex variables,
But HLS implementation suggests prohibitive 
resource usage and latency

* See slides 13,14

10th variable
  not listed: core tower sum
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Hardware and Firmware
● Target device: Xilinx Virtex™ 7 FPGA
● Clock cycle: 5 ns
● Latency budget  - 12 cycles
● Resource budget – enough for shallow BDT

– Max. depth=2, ntrees=32, pruned
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Tools

           - BDT model implementation (Python version)

          – Convert trained XGBoost to VHDL

              - Synthesis, implementation, simulation, bitfiles

            - Backend to Conifer, useful for diagnostics
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Compute 10 input variables =
9 sums over same color + 1 core tower sum

BDT
Max depth=2

Ntrees=32
(N

Nodes
=220)

Trigger Object
99 

calorimeter
supercells

Use subset of variables 
around core to estimate TOB energy

BDT Score,
E

T
,

Conditions

Tau Algorithm Outline

Compare
with

Thresholds

Parameters
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Status
● Performance at least as good as heuristic algorithm
● Resource usage on FPGAs is lower than heuristic 

algorithm
● Advanced testing stage

– Fully implemented in firmware and simulation software
– Ongoing tests on detector hardware
– Ongoing checks on data collected during 2022-2023



David Reikher

 

8

Thank you!

Some more interesting details in the backup :)
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BDT on FPGA

Input - vector of engineered features

Tree 1 Tree 2 Tree N

Score for input

Threshold

Hyperparameters:
● Number of trees
● Max. depth of tree
● How much pruning

These determine N
nodes

 
 - determines resource usage
     and whether the design meets timing

Node

On FPGA:
- Compute all nodes in parallel
- Traverse each tree
- Sum N scores



David Reikher

 

10

Resource usage vs hyperparameters
Resource Utilization
More Nodes (low g, high M or N) => More resource usage
Higher M – exponentially higher resource usage ( N

nodes
~2M+1 )

Higher N – linearly higher resource usage ( N
nodes

~N x N
avg.

 
nodes in tree 

)

Latency
Higher max_depth – higher latency ( ~ linear with M )
Higher nt – higher latency ( addition of N numbers ~log

2
(N) )

Ability of integrated BDT design to meet timing
Depends mainly on number of nodes in BDT
From experiments, if N

nodes
>~220, full firmware doesn’t meet timing with 

Vivado 2022.1

N – number of trees, M – max. depth
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How the tau discriminants are used

Fine layer (EM1,EM2) Coarse Layer (PS, EM3, HAD)

** BDT <=> set of cuts on E
T
 depositions a certain distance from TOB center

Heuristic
“Stage 1”: E

T
 Cut

Thresh. 1 - Cut on TOB E
T
 (cluster-based)

Thresh. 2 – On isolation of cluster inside EM2

BDT

Thresh. 1 - Cut on TOB E
T 
(fixed around core)

Thresh. 2 – On BDT score, i.e. “complex isolation” **

“Stage 2”: Fine tuning
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Constraints
● Latency

– 12-cycles @ 200 Mhz
– Fully pipelined

● Input:
– 99 supercells, digitized to 25 MeV (16 bit)
– 8 parameters for thresholds

● 6 discriminant thresholds (8 bit)
● 2 energy thresholds (16 bit)

● Output:
– ET estimate in TOB (16 bit)

– 2 L/M/T working points (2 bits each)
– Does TOB have maximum in central tower (1 bit)

● Resources
– Same or less than heuristic algorithm

Based on already existing heuristic algorithm
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Explanation using SHAP values

Signal TOB Background TOBBDT score
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SHAP ranking of selected variables
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Some challenges and resolutions
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Challenge I – switching models
- Quickly update BDT in firmware if re-training is required
- Modify summation schemas for TOB energy estimation

A=x+y+z
B=x+y
C=y+z

graph_vhdl
Input Ready 

at
cycle

A 2

B 4

C 1

Latency requirements:

Sums - “AdderTree” VHDL entity

Similar “DelayTree” VHDL entity implementing all delays

Bonus: Clean VHDL code. All sums and delays in two separate auto-generated entities.
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Challenge I – switching models
(continued)

Fully 
Automatic 
Pipeline:

Trained 
model

VHDL of 
BDT

VHDL
code 
generator
summations, 
delays

Summation
schema for 
BDT variables 
& ET (json
file)

VHDL
test bench
Compare results
with software 
simulation 

VHDL of 
Full algo

Firmware
Synthesis & Implementation

Tested VHDL 
of full algo

Bitfiles

Hardware test
(not automatic)
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Challenge II – meeting timing
Problem: 
Difficulty meeting timing for eFEXFirmware with BDT tau algorithm.

Possible Solution:
BDT produced by Vitis HLS is dense. To reduce logic density, increasing clock uncertainty 
parameter may help (using Vivado TCL command):

set_clock_uncertainty 3Default (uncertainty=0.27 x period)

Uncertainty
 3 ns

- Lower BDT latency
- “Denser” logic

- Higher BDT latency
- “Thinner” logic

[Vitis HLS “Schedule Viewer”]

Clock cycle
5 ns
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Challenge III – C++ algorithm simulation
Problem: 
Must be implemented in multiple places.
- Automatic validation of algorithm outputs from VHDL simulation
- Automatic validation of algorithm outputs from hardware simulation
- Algorithm implementation for R&D (Python *)
- Detector simulation software
Solution:
C++ implementation with wrapper accepting pointers to inputs.
For each of the above cases, just set the pointers during initialization.

* Python can call C++ using e.g. ctypes
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Important Lessons Learned
for BDTs on FPGA

● During R&D always keep in mind resource and latency restrictions.
– Experiment early on with synthesis and implementation of simple designs

● Understand how the tools work and do not be afraid to tweak them (e.g. 
conifer/hls4ml).

● ML algorithms likely will require re-training (possibly at the worst possible time)
– Develop automated tools to produce and test FPGA design (VHDL/Verilog, etc.)

● Whenever possible avoid using floats
● Try to use the same C++ code for all software implementations (detector simulation 

software, hardware simulation, test bench, R&D, etc.)
● Use Vitis HLS to get (very) rough estimate of resource usage for logic
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