
BDT for Tau Identification
in the ATLAS Level-1 Trigger

David Reikher

September 25, 2023

Fast Machine Learning for science
Imperial College London

David Reikher

2

Tau Identification

“Trigger tower”

Input to algorithm:
“Trigger object” (TOB)
 - A block of 3x3 trigger towers

ATLAS Trigger must identify taus for tau-based physics analyses
Challenging experimental signature of taus based on calorimeter energy depositions
Two candidate algorithms – heuristic, ML-based

Further details on ATLAS trigger: arXiv:2305.16623 Comprised of 99 “supercells”
 => 99 16-bit numbers

https://arxiv.org/abs/2305.16623

David Reikher

3

Input Variables

Supercells located symmetrically around TOB axis

Variables must be:
- Quick to compute (max. 3 cycles)
- Light in resources

10 selected variables using SHAP ranking*

3-stage adder

1-stage adder2-stage adder

Tried different complex variables,
But HLS implementation suggests prohibitive
resource usage and latency

* See slides 13,14

10th variable
 not listed: core tower sum

David Reikher

4

Hardware and Firmware
● Target device: Xilinx Virtex™ 7 FPGA
● Clock cycle: 5 ns
● Latency budget - 12 cycles
● Resource budget – enough for shallow BDT

– Max. depth=2, ntrees=32, pruned

David Reikher

5

Tools

 - BDT model implementation (Python version)

 – Convert trained XGBoost to VHDL

 - Synthesis, implementation, simulation, bitfiles

 - Backend to Conifer, useful for diagnostics

David Reikher

6

Compute 10 input variables =
9 sums over same color + 1 core tower sum

BDT
Max depth=2

Ntrees=32
(N

Nodes
=220)

Trigger Object
99

calorimeter
supercells

Use subset of variables
around core to estimate TOB energy

BDT Score,
E

T
,

Conditions

Tau Algorithm Outline

Compare
with

Thresholds

Parameters

David Reikher

7

Status
● Performance at least as good as heuristic algorithm
● Resource usage on FPGAs is lower than heuristic

algorithm
● Advanced testing stage

– Fully implemented in firmware and simulation software
– Ongoing tests on detector hardware
– Ongoing checks on data collected during 2022-2023

David Reikher

8

Thank you!

Some more interesting details in the backup :)

David Reikher

9

BDT on FPGA

Input - vector of engineered features

Tree 1 Tree 2 Tree N

Score for input

Threshold

Hyperparameters:
● Number of trees
● Max. depth of tree
● How much pruning

These determine N
nodes

 - determines resource usage
 and whether the design meets timing

Node

On FPGA:
- Compute all nodes in parallel
- Traverse each tree
- Sum N scores

David Reikher

10

Resource usage vs hyperparameters
Resource Utilization
More Nodes (low g, high M or N) => More resource usage
Higher M – exponentially higher resource usage (N

nodes
~2M+1)

Higher N – linearly higher resource usage (N
nodes

~N x N
avg.

nodes in tree

)

Latency
Higher max_depth – higher latency (~ linear with M)
Higher nt – higher latency (addition of N numbers ~log

2
(N))

Ability of integrated BDT design to meet timing
Depends mainly on number of nodes in BDT
From experiments, if N

nodes
>~220, full firmware doesn’t meet timing with

Vivado 2022.1

N – number of trees, M – max. depth

David Reikher

11

How the tau discriminants are used

Fine layer (EM1,EM2) Coarse Layer (PS, EM3, HAD)

** BDT <=> set of cuts on E
T
 depositions a certain distance from TOB center

Heuristic
“Stage 1”: E

T
 Cut

Thresh. 1 - Cut on TOB E
T
 (cluster-based)

Thresh. 2 – On isolation of cluster inside EM2

BDT

Thresh. 1 - Cut on TOB E
T
(fixed around core)

Thresh. 2 – On BDT score, i.e. “complex isolation” **

“Stage 2”: Fine tuning

David Reikher

12

Constraints
● Latency

– 12-cycles @ 200 Mhz
– Fully pipelined

● Input:
– 99 supercells, digitized to 25 MeV (16 bit)
– 8 parameters for thresholds

● 6 discriminant thresholds (8 bit)
● 2 energy thresholds (16 bit)

● Output:
– ET estimate in TOB (16 bit)

– 2 L/M/T working points (2 bits each)
– Does TOB have maximum in central tower (1 bit)

● Resources
– Same or less than heuristic algorithm

Based on already existing heuristic algorithm

David Reikher

13

Explanation using SHAP values

Signal TOB Background TOBBDT score

David Reikher

14

SHAP ranking of selected variables

David Reikher

15

Some challenges and resolutions

David Reikher

16

Challenge I – switching models
- Quickly update BDT in firmware if re-training is required
- Modify summation schemas for TOB energy estimation

A=x+y+z
B=x+y
C=y+z

graph_vhdl
Input Ready

at
cycle

A 2

B 4

C 1

Latency requirements:

Sums - “AdderTree” VHDL entity

Similar “DelayTree” VHDL entity implementing all delays

Bonus: Clean VHDL code. All sums and delays in two separate auto-generated entities.

David Reikher

17

Challenge I – switching models
(continued)

Fully
Automatic
Pipeline:

Trained
model

VHDL of
BDT

VHDL
code
generator
summations,
delays

Summation
schema for
BDT variables
& ET (json
file)

VHDL
test bench
Compare results
with software
simulation

VHDL of
Full algo

Firmware
Synthesis & Implementation

Tested VHDL
of full algo

Bitfiles

Hardware test
(not automatic)

David Reikher

18

Challenge II – meeting timing
Problem:
Difficulty meeting timing for eFEXFirmware with BDT tau algorithm.

Possible Solution:
BDT produced by Vitis HLS is dense. To reduce logic density, increasing clock uncertainty
parameter may help (using Vivado TCL command):

set_clock_uncertainty 3Default (uncertainty=0.27 x period)

Uncertainty
 3 ns

- Lower BDT latency
- “Denser” logic

- Higher BDT latency
- “Thinner” logic

[Vitis HLS “Schedule Viewer”]

Clock cycle
5 ns

David Reikher

19

Challenge III – C++ algorithm simulation
Problem:
Must be implemented in multiple places.
- Automatic validation of algorithm outputs from VHDL simulation
- Automatic validation of algorithm outputs from hardware simulation
- Algorithm implementation for R&D (Python *)
- Detector simulation software
Solution:
C++ implementation with wrapper accepting pointers to inputs.
For each of the above cases, just set the pointers during initialization.

* Python can call C++ using e.g. ctypes

David Reikher

20

Important Lessons Learned
for BDTs on FPGA

● During R&D always keep in mind resource and latency restrictions.
– Experiment early on with synthesis and implementation of simple designs

● Understand how the tools work and do not be afraid to tweak them (e.g.
conifer/hls4ml).

● ML algorithms likely will require re-training (possibly at the worst possible time)
– Develop automated tools to produce and test FPGA design (VHDL/Verilog, etc.)

● Whenever possible avoid using floats
● Try to use the same C++ code for all software implementations (detector simulation

software, hardware simulation, test bench, R&D, etc.)
● Use Vitis HLS to get (very) rough estimate of resource usage for logic

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

