Gravitational waves and
cosmological magnetic fields

Swiss CTA Observatory Day (Dec. 14, 2023)

International Space Science Institute (ISSI), University of Bern

ﬁm:’!ﬂ Alberto Roper Pol

SNSF Ambizione fellow
University of Geneva




Introduction and Motivation

® Gravitational waves are opening a new window into our
understanding of the Universe

® First event GW150914 detected by LIGO-Virgo collaboration?
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1[LIGO—Virgo Collaboration], Phys. Rev. Lett. 116, 061102 (2016)



Introduction and Motivation

® GW170817 NS binary merger? first detection of GW and EM counterpart
(constraint on the GW speed, measure of the Hubble rate, neutron star equation
of state, ...)

® Several following events: LIGO-Virgo-KAGRA started the fourth observing run
(O4) in May 2023 — 90 events up to 03b3

GO (10— 50 keV) T Masses in the Stellar Graveyard

2[LIGO-Virgo—Felrmi GBM-Integral collaborations], Astrophys.J.Lett. 848 (2017) 2, L13
[LIGO-Virgo Collaboration], GWTC-3, arXiv:2111.03606 (2021).
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LISA

® |aser Interferometer Space
Antenna (LISA) is a
space—based interferometer

® Approved in 2017 as one of the
main research missions of ESA
(L3) with NASA collaboration

® Launch planned for 2034

® Composed by three spacecrafts
in a distance of 2.5M km

Figure: Artist’s impression of LISA from Wikipedia



Gravitational spectrum (space-based detectors)
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Pulsar Timing Array (PTA)

® An array of millisecond pulsars
(MSP) is observed in the radio
band to compute the delays on
the time of arrival due to the
presence of GWs.

® Collected data is the time series Figure: Image courtesy of Science,
. credit: Nicolle Rager Fuller
of residuals for each pulsar:
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4R. W. Hellings and G. S. Downs, Astrophys. J. Lett. 265 (1983) L39-L42:



Pulsar Timing Array (PTA) collaborations

International PTA collaborations combine their
data in the IPTA collaboration.

European Pulsar Timing Array (EPTA):
Effelsberg, Lovell, Nancay Radio Telescope,
Sardinia Radio Telescope, Westerbork Synthesis
Radio Telescope.

North American Nano-Hertz Observatory for
Gravitational Waves (NANOGrav):

Green Bank Telescope (GBT), Arecibo (until
2020), Very Large Array (VLA), Canadian
Hydrogen Intensity Mapping Experiment
(CHIME).

Parkes PTA (PPTA): Murriyang radio telescope.

Indian PTA (InPTA): GMRT.

Chinese Pulsar Timing Array (CPTA):
Five-hundred-meter Aperture Spherical Telescope 3
(FAST). *

MeerKAT PTA (MPTA).



PTA detection

® The PTA collaborations reported for the first-time evidence of a stochastic

gravitational wave background on a press release on June 28, 2023 (plus a series

of papers by each collaboration).

NANOGrav:

68 pulsars, 16yr of data

~3-4a significance

EPTA + InPTA:

25 pulsars, 24yr of data

~3g significance

Agazie et al. [2306.16213
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Separaion Angle Between Pulsars.

Antoniadis et al. [2306.16214]

Credit: Andrea Mitridate

PPTA:
32 pulsars, 18yr of data
~20significance

CPTA:
57 pulsars, 3yr of data
~4.65 significance

Reardon etal. [2306.16215)

Xu etal 230616216
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5[NANOGrav collaboration], ApJ Lett. 951, 8 & 11 (2023).
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log10 RMS (s)
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Cosmological GWs

Main considered source of the signal is from the superposition of supermassive black
hole binaries (SMBHB), but other sources are also possible: individual sources’ or

early universe sources® (cosmological GW background).

Cosmological GWSs have the potential to provide us with direct
information on early universe physics that is not directly accessible via
electromagnetic observations, possibly complementary to collider
experiments:
nature of first-order phase transitions (baryogenesis, BSM physics,
high-energy physics),
primordial origin of intergalactic magnetic fields.

7[EPTA Collaboration], The second data release from the European Pulsar Timing Array IV.
Search for continuous gravitational wave signals, arXiv:2306.16226

8[EPTA Collaboration] (incl. ARP), The second data release from the European Pulsar Timing Array:
V. Implications for massive black holes, dark matter and the early Universe, arXiv:2306.16227.
[NANOGrav Collaboration], The NANOGrav 15 yr Data Set:
Search for Signals from New Physics, arXiv:2306.16219.



Probing the early Universe with GWs

Cosmological (pre-recombination) GW background
® Why background? Individual sources are not resoluble, superposition of
single events occurring in the whole Universe.

100 T
Ry«H« 100 GeV

f, ~1.64 x 1073 Hz

® Phase transitions
® Ground-based detectors (LVK, ET, CE) frequencies are 10-1000 Hz
Peccei-Quinn, B-L, left-right symmetries ~107,10% GeV.
® Space-based detectors (LISA) frequencies are 107°~1072 Hz
Electroweak phase transition ~ 100 GeV

® Pulsar Timing Array (PTA) frequencies are 10~°~10~" Hz
Quark confinement (QCD) phase transition ~ 100 MeV

® From inflation

® B-modes of CMB anisotropies (f. ~ 1078 Hz).
® Can cover all f spectrum, depending on end-of-reheating T, and
blue-tilted (beyond slow-roll inflation).
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First—order phase transition
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GW sources in the early universe

® Magnetohydrodynamic (MHD) sources of GWs:
® Sound waves generated from first-order phase transitions.
® (M)HD turbulence from first-order phase transitions.

® Primordial magnetic fields.

® High-conductivity of the early universe leads to a
high-coupling between magnetic and velocity fields.

® Other sources of GWs include

Bubble collisions.
Cosmic strings.
Primordial black holes.
Inflation.

ARP et al., 2307.10744, 2308.12943
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Primordial magnetic fields

® Magpnetic fields can either be produced at or present during
cosmological phase transitions.

® The magnetic fields are strongly coupled to the primordial plasma
and inevitably lead to MHD turbulence.’

® Present magnetic fields can be amplified by primordial turbulence

via dynamo.10

9J. Ahonen and K. Enqvist, Phys. Lett. B 382, 40 (1996).
1OA. Brandenburg et al. (incl. ARP), Phys. Rev. Fluids 4, 024608 (2019).



Gravitational spectrum (turbulence from PTs)!!
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11ARP, C. Caprini, A. Neronov, D. Semikoz, PRD 105, 123502 (2022)

A. Neronov, ARP, C. Caprini, D. Semikoz, PRD 103, L041302 (2021)
ARP et al., arXiv:2307.10744 (2023).



Primordial magnetic field constraints with PTA?
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Multi-messenger constraints on primordial magnetic ﬁelds3

® Primordial magnetic fields would evolve
through the history of the universe up to
the present time and could explain the
lower bounds in cosmic voids found by
the Fermi collaboration.*
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® Maximum amplitude of primordial
magnetic fields is constrained by the big
bang nucleosynthesis.?
® Additional constraints from CMB,
Faraday Rotation, ultra-high energy

cosmic rays (UHECR).

ARP et al., arXiv:2307.10744 (2023).

3
4A. Neronov and I. Vovk, Science 328, 73 (2010).
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® CTA telescopes will allow to explore
a broader range of parameters of the
intergalactic magnetic field with
strengths 1-10 pG, estimated!3using
deep exposure of the nearest hard

spectrum blazar Mrk 501

V. F. Shvartsman, Pisma Zh. Eksp. Teor. Fiz. 9, 315 (1969).

Korochkin, Kalashev, Neronov, Semikoz, PoS ICRC2021 (2021) 919



Multi-messenger constraints with LISA and CTA
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Conclusions

Primordial magnetic fields in the early universe can significantly
contribute to the stochastic GW background (SGWB) and lead to the
production of MHD turbulence.

The SGWB produced by MHD turbulence requires, in general, performing
high-resolution numerical simulations, which can be done using the
PENCIL CODE.

LISA, PTA, and next-generation ground-based detectors can potentially
be used to probe the origin of magnetic fields in the largest scales of our
Universe, which is still an open question in cosmology.

~-ray observations can constrain intergalactic magnetic fields.

Primordial magnetic fields can be studied in a multi-messenger approach,
combining GW (interferometers and radio telescopes), CMB, and y-ray
observations.
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github.com/AlbertoRoper/cosmoGW
cosmology.unige.ch/users/alberto-roper-pol


https://github.com/AlbertoRoper/cosmoGW
https://cosmology.unige.ch/users/alberto-roper-pol

Generation, evolution, and observations of cosmological magnetic fields

April 29, 2024 to June 7, 2024
Bernoulli Center
Europe/Zurich timezone

Overview
Call for Abstracts
Timetable
Registration

Participant List

[ alberto.roperpol@unige.ch

evolution, and jons of ‘magnetic fields s a 6 week program at the
Bernoulli Center (https://bernoulliepfl.ch/) with the objective to combine experts and young researchers
in different areas related to cosmological magnetic fields.

The program is divided in three 2-week meetings. The first week of each meeting consists on a
workshop with plenary and contributed talks, and the second week of each meeting consists on open
discussions and free time for the participants to discuss or work on collaborative or their own projects.

The Bernoulli center, located at the EPFL campus in Lausanne, provides open shared desk space for
accepted participants.

Observations of gamma-ray blazars indicate the presence of intergalactic m=Jnetic fields (IGMF) in the
cosmic voids of the large scale structure (LSS) of our v~ OME. rse. Although their oigin

- w-yeneration gamma-ray and
radio observatories " n ico 5 wuservatory and the Square Kilometer Array
Observatory, respec ~wu 10 provide us with detailed measurements of IGMF in different
elements of the LSS, including voids and filaments, and clarify the origin of the IGMF in voids

Meeungs

magnetic field ion from phase
transitions, and chiral anomalies (April 29-May 10)

Evolution of primordial magnetic fields: before, during, and after recombination (May 13-24)

Multi- ions and i ints (May 27-June 9)
Local Organizing Committee:

Alexey Boyarsky (Leiden University and EPFL), boyarsky@lorentz.leidenuniv.nl
Chiara Caprini (Universit de Geneve and CERN),chiara.caprin@unige.ch
Michaela Hi (EPFL), michaela

Teresa Montaruli (Universite de Geneve), teresa. montaruh@umge ch

Andrii Neronov icule et C jie and EPFL), andi ch
Yves Revaz (EPFL), yves.revaz@epfl.ch

Alberto Roper Pol (Universite de Geneve), alberto, rcperpol@umge ch

Jennifer Schober (EPFL), jennifer.schober@epfl.ch
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