
Science with LST/MAGIC

J. Sitarek on behalf of the LST/CTA Collaboration 
and MAGIC Collaboration

2023.12.13, Swiss CTAO days, (Bern/remote)



Why talking about MAGIC 
in CTAO-CH meeting?

● The science of the future CTAO should 
stem from what we have learned from 
the current generation of Cherenkov 
telescopes

● MAGIC is located in the same place as 
CTAO-North, making it also possible 
for joint operations of MAGIC+LST-1
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Outline
● Cherenkov telescopes: current and 

future
● Selected MAGIC results and early 

LST-1 results
● Joining old and new: MAGIC+LST-1
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Cherenkov telescopes: 
current and future
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Physics with IACTs

IACT are versatile instruments: many different scientific targets

Galactic Science:
SNRs, PWNe, Gal. 
Cent., Pulsars, 
novae ...

Extragalactic Science:
AGNs and beyond

Transients and Multi-
Messanger:
Follow up of GRBs, 
GW, n, ...

Fundamental Physics 
and Cosmology:
Probing Dark Matter, 
LIV,  EBL, IGMF, ...

More than gamma rays:
Cosmic Rays, Intensity 
interferometry, optical 
measurements, ...
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Currently operating IACTs 
● H.E.S.S. : 4 x 12m + 

1 x 28m in Namibia
● MAGIC: 2 x 17m  in 

La Palma, Spain
(with a nearby 1 x 
23m LST-1)

● VERITAS: 4 x 12m 
in Arizona, USA

● More telescopes = better sensitivity
● Bigger telescopes = lower energy threshold
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What will improve with 
CTA?

● What we have heard many times so far:
– Sensitivity
– Energy range
– Angular resolution
– Size of the FoV (possibility for large scans)

● CTA is based on the same general principles 
and technologies of the current generation of 
IACTs (but with many innovations at individual 
subsystem levels!) - the improvement comes 
from upscaling it to large number of better 
and specialized (3 types) telescopes

● We expect to deepen the knowledge where 
we see the tip of the iceberg now, and to 
discover new phenomena that are beyond the 
reach of current instrument sensitivity.
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What is also important?
● For a Crab-like source MAGIC telescopes can 

measure the flux with statistical accuracy of ~30% 
within ~1.5 minutes – bright sources are limited by 
systematic uncertainties even for very short 
observation times

● CTA is also expected (and must in order to profit 
from the gain in sensitivity!) to improve the 
systematic uncertainties (careful selection of 
requirements, plus advanced atmospheric 
monitoring). 
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What will not improve?
● Current generation of telescopes:

~ 1000 hrs (H.E.S.S.) + ~1000 hrs (MAGIC) + 
~800 hrs (VERITAS, with monsoon season)  = ~ 
2800 hrs of good weather dark time per year

● CTA: 1000 hrs North + 1000 hrs South = ~2000 hrs 
● Every hour of CTA time will be precious
● We need to make an effort to exploit the current 

generation of IACTs (and the first telescopes of 
CTA) for the tasks that do not require the full 
power of CTA. 
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Crab observations with 
LST-1

● The understanding of a 
new IACT instrument 
usually starts with 
reproduction of the 
results from the VHE 
standard candle: Crab 
Nebula

● A detailed performance 
paper using Crab data 
has been prepared by 
the LST collaboration Abe et al. 2023

https://ui.adsabs.harvard.edu/abs/2023ApJ...956...80A/abstract
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LST-1 sensitivity
● LST-1 is still a single 

telescope. 
– MAGIC has ~1.5 factor 

better sensitivity than 
LST-1 

– At the lowest energies 
single IACTs suffer 
heavily from muon 
background.

– Large background rates 
limit the sensitivity due 
to systematic 
constraints

Abe et al. 2023

https://ui.adsabs.harvard.edu/abs/2023ApJ...956...80A/abstract
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LST going stereo ?

● The constructions of the remaining LST telescopes are 
progressing rapidly (details in previous talk)

● The LST array once completed will have an 
unprecedented sensitivity in the sub-100 GeV range
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Selected MAGIC results and 
early LST-1 results 
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Pulsars
● Rapidly rotating neutron 

star with a beam of 
radiation sweeping over 
the observer 

● Different regions where 
particles can be 
accelerated because the 
electric field is not 
counteracted by the charge 
pulled out from the surface 
of the neutron star

R. Zanin

NASA
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Pulsars at VHE: Crab
● Before 2008: two models considered polar 

gap and outer gap – different type of cutoff 
expected at few tens of GeV

● Aliu et al.,  2008
First detection of > 25GeV emission from 
a pulsar

● Aliu et al., 2011 (VERITAS)
First detection of emission > 120-250 GeV

● Aleksić et al., 2011
First phase resolved spectra 25-100 & 50-
400 GeV

● Aleksić et al., 2014
Bridge Emission ≥ 50 GeV 

● Ansoldi et al., 2016
Aggregating 320h of data: pulsar spectrum 
extends up to TeV energies => troubles for 
models, the emission might be produced 
much farther away

Ansoldi et al. 2016

https://ui.adsabs.harvard.edu/abs/2016A%26A...585A.133A/abstract
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LST-1 view of Crab pulsar

● Clear detection of both peaks in just 34 hrs of LST-1 
data 

● The low energy threshold of LST-1 is a big advantage 
here and will allow precise studies of the pulse 
profiles. 

Abe et al. 2023

https://ui.adsabs.harvard.edu/abs/2023ApJ...956...80A/abstract
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Geminga pulsar
● Old, radio-quiet 

pulsar (different w.r.t 
Crab)

● The softest source 
ever detected by 
IACTs: very 
challenging; required 
special trigger 
(Dazzi et al. 2021) 
and 80 hrs of 
observations to 
detect it!

Acciari et al. 2020

https://ui.adsabs.harvard.edu/abs/2021ITNS...68.1473D/abstract
https://ui.adsabs.harvard.edu/abs/2020A%26A...643L..14M/abstract
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LST-1 view of Geminga pulsar

● Clear detection of P2 with just 20 hours of 
observations (5s in 8 hours)

● Showing the power of the low energy 
threshold of LST-1

A. Mas-Aquilar, 
ICRC 2023
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Galactic sources above 
100 TeV ?

● To understand the knee in CRs we 
need to understand where the PeV 
protons are produced 

● PeV protons will produce in hadronic 
interactions ~100 TeV gamma rays

● A lot of progress recently thanks to 
LHAASO (see also a dedicated 
LHAASO talk on Thursday) 

● ...but ~100 TeV photons can be also 
made in leptonic interactions

● Spectral and morphologic 
information of the O(100TeV) 
sources (+MWL information) needs 
to be studied to find true PeVatrons

Credits: IceCube top
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LHAASO J2108+5157 in 
LST-1 eye

● Deep exposure of a LHAASO-detected source
● Hint of emission at 3-10 TeV band
● (sub-)TeV emission strongly constrains the spectral shape

Abe et al 2023

https://ui.adsabs.harvard.edu/abs/2023A%26A...673A..75A/abstract
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Leptonic or hadronic?

● PWN or TeV halo
● But no pulsar 

detected to power 
the emission

Leptonic scenario

pulsar

Synchr.

IC

Hadronic scenario

● Pion production in molecular clouds
● No explanation for the GeV 

emission
● Injection of protons with high 

minimal Lorentz factor (1.6 x 105) is 
required

Secondary 
synch.

p0 
Cao+21

High 
g

min

Abe et al 2023

https://ui.adsabs.harvard.edu/abs/2023A%26A...673A..75A/abstract


Novae
● Cataclysmic variable binary systems of a 

white dwarf (WD) and a donor star.
● Mass transfer from the donor star causes 

thermonuclear explosions of the 
hydrogen accumulated on the WD.

● If the donor star is a RG, the system is 
immersed in its wind, creating a 
symbiotic binary.

● Some novae have WD very close to the 
mass limit, causing repetition of outbursts 
in human lifespan (<100 years) – 
recurrent novae.

● Due to high optical brightness (lasting for 
weeks/months)  they have been studied 
for centuries

● Since a decade also known GeV emitters 
but leptonic/hadronic origin was unknown

Acciari et al. 2022

https://ui.adsabs.harvard.edu/abs/2022NatAs...6..689A/abstract


RS Ophiuchi
● Recurrent symbiotic 

novae with outbursts 
every ~15 years

● Latest outburst on 
2021.08.8 UT ~22:20

● Independently followed 
and detected by H.E.S.S. 
(Aharonian et al. 2022) 
and MAGIC (Acciari et al. 
2022)

● The first nova detected 
in VHE gamma rays 

Credit: MPI, Flavio Cury  (superbossa.com)



Proton vs electron models

● Electron model needs peculiar injection spectrum (with intrinsic, non-cooling, break) – 
preference for protons

● AIC test: electron model is only 4.7 x 10-4 times as probable as proton model – another 
preference for protons 

Acciari et al. 2022

https://ui.adsabs.harvard.edu/abs/2022NatAs...6..689A/abstract


LST-1 view of RS Oph
● RS Oph was also 

detected by LST-1
● The spectrum is 

consistent with 
MAGIC and 
H.E.S.S.

● Combination and 
modeling of the 
data ongoing Aguesta-Cabot, Gamma2022
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Active Galactic Nuclei
● AGNs are bright cores of some 

galaxies hosting supermassive 
black holes

● Gravitational collapse onto the 
black hole is powering ejection of 
relativistic jets

● Strongly variable non-thermal 
emission from radio up to TeV 
energies

● The most natural models assume 
that TeV (and MWL) emission 
comes from compact regions 
moving along the jet

● Many flares observed by the 
current generation of IACTs – often 
difficult to explain within simple 
models 

Weekes 2003

Active region
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BL Lac flare seen by LST-1
● Gamma ray spectra of blazars are 

(bend) power-law – the lower the 
energy threshold the larger event 
statistics

● Low energy threshold of LST 
allows studies at shorter time 
scales:
– Possibility to probe acceleration and 

energy dissipation in the jet of an 
AGN

– Bright flares provide data samples 
usable beyond the physics of 
individual sources: EBL, LIV, ALP, …

● Low threshold is also essential in 
studies of farther AGNs (due to 
absorption in EBL). 

Nozaki et al. ICRC 2023
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Hunt for gamma-ray burst 
● Since their discovery 

in late 60s, various 
follow-up studies 
were aimed at 
understanding those 
rapid flashes of X-ray 
and gamma-ray 
radiation

● Current generation of 
IACTs have been 
trying for nearly 20 
years to detect a 
GRB

● It is crucial to be:
– fast (rapidly decaying emission) 
– sensitive at lowest energies (far 

away sources)
– lucky (redshift and observation 

conditions)

Time delay [s]
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ith
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A. Berti 2021

https://www.worldscientific.com/doi/epdf/10.1142/9789811269776_0245
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GRB 190114C detection by MAGIC
● The first GRB reported to be 

detected in VHE gamma rays 
● Highly significant signal of 

over 50s

● Emission detected up to ~40 
min from the onset of the 
burst 

● Energy fluxes of TeV, GeV 
and X-ray ranges are 
comparable

● Spectrum reaching TeV 
energies – new emission 
component 

● The most impressive GRB 
until the time of “BOAT” GRB 
221009A detected by 
LHAASO

Acciari et al. 2019

https://ui.adsabs.harvard.edu/abs/2019Natur.575..459M/abstract
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Joining old and new: MAGIC+LST-1
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MAGIC and LST-1
● Both MAGIC and LST-1 are 

located in the same site
● Proximity of both instruments 

allows common analysis of the 
same gamma-ray showers. 

● For LST-1 this means going 
from mono to stereo ==> 
much better reconstruction 
and rejection of background

● For MAGIC this means a third 
telescope with larger light yield 
that catches nearly all 
showers seen by MAGIC-I and 
MAGIC-II 

Size of the grey circles represent 
the mirror diameters

D. Lopez IAC

Typical shower 
light pool
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MAGIC and LST-1
● For the moment MAGIC 

and LST-1 events are 
matched by using a 
software trigger exploiting 
event time stamps 
(hardware trigger under 
tests)

● Improved energy threshold 
and recovery of low energy 
events in which one of the 
MAGIC images does not 
survive the cleaning/quality 
cuts

Abe et al. 2023

https://ui.adsabs.harvard.edu/abs/2023arXiv231001954A/abstract
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Differential sensitivity
● Joint observations allow 

detection of 30% (40%) 
lower flux than MAGIC-
alone (LST-1-alone). 

● This corresponds to the 
detection of the same 
flux in twice (nearly three 
times) shorter time.

● MAGIC and LST-1 when 
combined have a better 
performance than 
working separately. Abe et al. 2023

https://ui.adsabs.harvard.edu/abs/2023arXiv231001954A/abstract
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Summary
● MAGIC (and the other telescopes of the current 

generation of IACTs) managed to obtain a lot of 
interesting results

● LST-1 is the new kid in the block: still concluding  
the commissioning, but already providing 
important scientific data

● We do not simply wait for the whole CTAO to be 
finished: combination of LST-1 and MAGIC allows 
us to study sources with improved sensitivity
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Backup
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Sensitivity of CTA

● Improvement of the sensitivity by a factor of a few
● Expanding the energy accessible to IACTs to tens of GeV and tens of TeV (synergies 

with Fermi and ground arrays like HAWC/LHAASO)
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Fast variability
● Ultra fast variability with time scales of 

minutes is a challenge for the models
● Extremely beamed emission regions (G~50-

100) and alternative emission scenarios 
(emission from the magnetosphere of a 
black hole, interaction with stars falling 
inside the jet, ...) has been proposed

● Detailed studies require excellent sensitivity 
and low energy threshold (higher statistics)

Aleksić et al., 2014

Aharonian et al. 2007
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What can we do with CTA: 
detect more sources

● Improved performance of 
CTA will allow us to detect 
more sources which are 
poorly populated in VHE 
band: pulsars, FSRQs, 
GRBs, starburst galaxies, …

● With increased number of 
detected sources of a given 
class we can move from 
studies of individual sources 
to population studies
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What can we do with CTA: 
deep studies

● Not only we can 
detect more sources, 
but we can also study 
them more in details.

● More precise time 
and energy 
information will allow 
more precise 
modeling of those 
sources

CTA simulated,  Sol et al., 2013

H.E.S.S. observed
Aharonian et al. 2007
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What can we do with CTA: 
detect new classes?

● Large gain in 
sensitivity will 
hopefully open the 
detection of classes 
of sources that have 
not yet been 
discovered at VHE: 
Counterparts of GW, 
Seyfert galaxies, 
novae, magnetars, 
Dark Matter, ...

Acharya et al. 2017
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What can we do with CTA:
scan of extragalactic sky

● IACTs are pointing instruments, but (MST and SST) 
CTA telescopes will have a large field of view, which 
combined with special divergent pointing mode, can be 
used to perform an unbiased scan of a fraction of a sky. 

Acharya et al. 2017
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GRB 190114C – light curve

Acciari et al. 2019

https://ui.adsabs.harvard.edu/abs/2019Natur.575..459M/abstract
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