

GRB precursors. Catch me if you can.

Gor Oganesyan

14 December 2023

prompt emission

[random BATSE GRBs]

band 10 keV - 10 MeV variability 0.01-1 s total duration 0.1 s - 1000s total energy 1E51-1E54 erg GRBs

short (<2 s) and long (>2 s)

C. Kouveliotou et al. 1993, Meegan et al 1996, Sakamoto et al. 2011, Paciesas et al 2012

short-hard vs long-soft GRBs

GRBs

GRBs at Very High Energies - the discoveries of 2019

MAGIC and H.E.S.S.

Towards TeVs!

GRBs at Very High Energies - the discoveries of 2019

MAGIC and H.E.S.S. collaborations

Acciari et al. 2019, Abdalla et al. 2019 & 2021; Acciari et al. 2021

The **BOAT**

The BOAT GRB in Context

THE LHAASO COLLABORATION, 2023

SGRBs

Credit: Stefano Ascenzi

Credit: Stefano Ascenzi

BNS merger and a GRB

Off-axis afterglow

GRB 170817/GW 170817

multi-wavelength LCs of the afterglow

Ghirlanda et al. 2019

apparent size is 2.5 milli-arc seconds at > 200 days

D'Avanzo et al. 2018 Dobie et al. 2018 Alexander et al. 2018 Troja et al. 2018

.

see also Mooley et al. 2018

GW170817

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

Current status of LVK

Updated 2023-11-16		01	— 02	2 — O3	— O4	— O5
LIGO		80 Мрс	100 Мрс	100-140 Мрс	150 160+ Mpc	240-325 Mpc
Virgo			30 Мрс	40-50 Мрс	40-80 Mpc	150-260 Mpc
KAGRA				0.7 Mpc	1-3 ≃10 ≳10 Mpc Mpc Mp	0 25-128 C Mpc
G2002127-v22	l 2015	l 2016	2017 2018	2019 2020 202 ⁻	1 2022 2023 2024 2025	2026 2027 2028 2029

Einstein Telescope (ET)

From Chan et al. 2018

Cosmic Explorer (CE)

Pre-merger sky localisation

where and when the GRB will occur in the sky!

Banerjee et al. 2023

GRB prompt emission spectrum

Sky-localization capability:

Very High Energy Emission

Banerjee et al. 2023

Current status of LVK

Updated 2023-11-16		01	— 02	2 — O3	— O4	— O5
LIGO		80 Мрс	100 Мрс	100-140 Мрс	150 160+ Mpc	240-325 Mpc
Virgo			30 Мрс	40-50 Мрс	40-80 Mpc	150-260 Mpc
KAGRA				0.7 Mpc	1-3 ≃10 ≳10 Mpc Mpc Mp	0 25-128 C Mpc
G2002127-v22	l 2015	l 2016	2017 2018	2019 2020 202 ⁻	1 2022 2023 2024 2025	2026 2027 2028 2029

One MM event (GW170817) and bright future

short (<2 s) and long (>2 s)

December 2021

Rastinejad et al. 2022, Nature

GRB 211211A

350 Mpc

Three-component kilonova fit

- $M_{ej} = 0.04 \pm 0.02 M_{\odot}$, almost all lanthanide-rich, in reasonable agreement with at2017gfo.
- $v_{ej} \simeq 0.25 0.3 c$
- Associated to compact object merger in a binary system, likely BNS

Rastinejad et al. 2022, Nature

(see also Troja et al. 2022, Nature)

GRB 211211A

Mei et al. 2022, Nature

GeV emission from a BNS merger

- not present in GW/GRB 170817

new component from KN-jet interaction

Mei et al. 2022, Nature

LGRBs

GRB precursors

LGRBs VHE emission

Fermi-GBM

Swift

Fermi-GBM

Fermi-GBM

LGRBs optical emission

Swift

Thank you!

Anything similar from the past?

Gehrels et al. 2006, Nature

Fynbo et al. 2006, Nature 2006

GRB 111005A

T90 ~ 26 s

Tanga et al. 2018, A&A

Michałowski et al. 2018, A&A

Levan et al. 2023, Nature Astronomy

GRB	band	$T_{90}(s)$	$T_{50}(s)$	$D_L(Mpc)$	kilonova
060614	$15-350 \ \mathrm{keV}$	106	43	590	hint (Yang et al. 2015)
060505	$15\text{-}350~\mathrm{keV}$	4		409	hint? (Jin et al. 2021, arXiv)
111005A	$15-350 \ \mathrm{keV}$	26	11	57	-
191019A	15-350 ${\rm keV}$	64	30	1260	-
211211A	$50-300 { m ~KeV}$	34	15	350	yes (Rastinejad et al. 2022)
230707A	$50-300 { m ~KeV}$	30	13	294	yes (Levan et al. 2023, arXiv)

Bromberg et al. 2013 (see also Moharana & Piran 2017)

Possible progenitors

Gottlieb et al. 2023, arXiv

Summary

GW 170817 / GRB 170817A

Emerging class of long-duration merger-driven GRBs

Promising future

Long but supernovaless

Gehrels et al. 2006, Nature

Gehrels et al. 2006, Nature

Fynbo et al. 2006, Nature 2006

GRB 111005A

T90 ~ 26 s

Tanga et al. 2018, A&A

Michałowski et al. 2018, A&A

Rastinejad et al. 2022, Nature

GRB 211211A

350 Mpc

Three-component kilonova fit

- $M_{ej} = 0.04 \pm 0.02 M_{\odot}$, almost all lanthanide-rich, in reasonable agreement with at2017gfo.
- $v_{ej} \simeq 0.25 0.3 c$
- Associated to compact object merger in a binary system, likely BNS

Rastinejad et al. 2022, Nature

(see also Troja et al. 2022, Nature)

GRB 211211A

Alessio Mei et al. 2022, Nature

GeV emission from a BNS merger

- not present in GW/GRB 170817
- new component from KN-jet interaction

20

21

22

23

24

25

26

0

20

AB-magnitude

60

80

40

Time since GRB (days)

-20

-19

-18

-17

-16

-15

CCSN

Ic-BL TDE

40

20

Number

0

Absolute magnitude

Levan et al. 2023, Nature Astronomy

20

21

22

23

24

25

26

0

20

AB-magnitude

60

80

40

Time since GRB (days)

-20

-19

-18

-17

-16

-15

CCSN

Ic-BL TDE

40

20

Number

0

Absolute magnitude

Levan et al. 2023, Nature Astronomy

T90 ~ 30 s

Levan et al. 2023, arXiv

Levan et al. 2023, arXiv

Summary

GRB	band	$T_{90}(s)$	$T_{50}(s)$	$D_L(Mpc)$	kilonova
060614	$15-350 \ \mathrm{keV}$	106	43	590	hint (Yang et al. 2015)
060505	$15-350 \ \mathrm{keV}$	4		409	hint? (Jin et al. 2021, arXiv)
111005A	$15-350 \ \mathrm{keV}$	26	11	57	-
191019A	15-350 ${\rm keV}$	64	30	1260	-
211211A	$50-300 { m ~KeV}$	34	15	350	yes (Rastinejad et al. 2022)
230707A	$50-300 { m ~KeV}$	30	13	294	yes (Levan et al. 2023, arXiv)

Rastinejad et al. 2022, Nature

What is going on?

Standard classification

short (<2 s) and long (>2 s)

C. Kouveliotou et al. 1993, Meegan et al 1996, Sakamoto et al. 2011, Paciesas et al 2012

short-hard vs long-soft GRBs

Bromberg et al. 2013 (see also Moharana & Piran 2017)

all Fermi/GBM data, Alessio Mei

all Fermi/GBM data, Alessio Mei

Possible progenitors

Gottlieb et al. 2023, arXiv

Summary

GRB	band	$T_{90}(s)$	$T_{50}(s)$	$D_L(Mpc)$	kilonova
060614	$15-350 \ \mathrm{keV}$	106	43	590	hint (Yang et al. 2015)
060505	$15-350 \ \mathrm{keV}$	4		409	hint? (Jin et al. 2021, arXiv)
111005A	$15-350 \ \mathrm{keV}$	26	11	57	-
191019A	$15\text{-}350~\mathrm{keV}$	64	30	1260	-
211211A	$50-300 { m ~KeV}$	34	15	350	yes (Rastinejad et al. 2022)
230707A	$50-300 { m ~KeV}$	30	13	294	yes (Levan et al. 2023, arXiv)

Rastinejad et al. 2022, Nature
Conclusions

- **Duration** vs hardness classification is not enough
- Contamination of collapsars vs mergers
- Emerging class of SNIess long-duration GRBs

Possible steps for the offline analysis

- Increase the sample of sGRBs beyond 2 s (Fermi/GBM)
- Caution on Swift/BAT GRBs
- Find an optimal duration cut (T90 vs T50)
- Fermi/LAT (100 MeV 10 GeV) for late-time EM counterparts

Back up slides

Short but a collapsar

GRB 200826A

z=0.748

Zhang et al. 2021, Nature Astronomy

z=0.748

Zhang et al. 2021, Nature Astronomy

GRB 200826A

z=0.748

Ahumada et al. 2021, Nature Astronomy

GRB 200826A

z=0.748

Rossi et al. 2022, A&A

sGRBs vs IGRBs in the Amati relation

GRB 200826A

Zhang et al. 2021, Nature Astronomy

GRB 211211A

Troja et al. 2022, Nature

Spectral lags in sGRBs vs IGRBs

Bernardini et al. 2015, MNRAS