GeV Fermi Gamma-ray observations of supernova remnants Prospects with CTA Marianne Lemoine-Goumard (LP2i-Bordeaux)

Complementarity of gamma-ray instruments

- Space-based detectors - continuous full-sky coverage in GeV

- Ground-based detectors have TeV sensitivity

• Current Imaging Atmospheric Cherenkov Telescopes (IACTs) have excellent energy and angle resolutions, but FoV of 0.003 sr and duty cycle of 10%

 \cdot Particle detectors have an aperture > 2 sr and duty cycle of 90% but angular resolution of ~0.6° (@ 1 TeV)

The 4FGL-DR4 catalog


```
arXiv:2307.12546
```

7194 sources detected in 14 years (546 more than DR3) 34% are unassociated Largest source population : AGNs with 1490 BL Lacs, 1624 Blazar candidates, 820 FSRQs 320 Pulsars 191 SNR & PWNe 82 extended sources (75 extended sources in 4FGL and DR2 : 6 modified, 3 new, 1 point => extended, 3 around pulsars)

The TeV sky

> 270 sources detected as of mid-2023

29 being coincident with SNRs (or SNRs interacting with Molecular clouds)

34 TeV sources coincident with PWNe

96 UNIDs : 35% (as for Fermi DR4)!

A large sample of SNRs detected in gamma-rays

Kepler SNR : so hard to catch at GeV/TeV energies !

- Upper-limits reported in LAT SNR catalog (3 yrs of P7 data) F. Acero et al 2016 ApJS 224 8
- Upper-limits reported by HESS (13 hours) F. Aharonian et al, 2008, A&A, 488, 219
- Paper by Xiang & Jiang, ApJ, 908, 22 (2021) but:
 - reported TS~21 (~3.8 sigma;12 yrs)
 - no study of the morphology and simple SED modeling
- Re-analysis using Fermi data using the same livetime but different configuration

 Detection with H.E.S.S. using a total of 152 hours of observation (10x more than in 2004-2005)

=> Detection by both instruments !

Acero, MLG, Ballet, A&A 660, A129 (2022)

H.E.S.S. Collab, A&A, 662, A65 (2022)

 Table 2. Impact on the source significance of different analysis setups above a 700 MeV energy threshold.

Configuration number	Summed analysis	Bin size (°)	Region size (°)	TS	
1	Yes	0.05	15	33.9	
2	No	0.05	15	30.6	
3	No	0.1	15	23.2	
4	No	0.1	20	21.4	

Kepler SNR with Fermi

Clear detection (TS=38.3 above 100 MeV) No significant differences between best-fit point-source and MWL templates Emission not significantly extended Hard power-law spectrum : Index = 2.14 ± 0.12_{stat} ± 0.15_{syst}

Interpretation of our Fermi data (I)

Well measured distance: 5.1 ± 0.8 kpc (Sankrit et al. 2016) Rationale : Gamma-ray stems from the NW interaction region where density is high (no~8 cm-3 from optical)

Electron emission coming from fast shocks (Southern hemisphere)

V_{shock} ~5000 km/s n₀~10⁻² cm⁻³

Hadronic emission

Interaction with the CSM with ~8 cm⁻³ Lower shock speed ~1700 km/s

Interpretation of our Fermi data (II)

Kepler SNR in a general census

Acero, MLG, Ballet, A&A 660, A129 (2022)

Marianne Lemoine-Goumard, CTA Observatory Swiss day – 14/12/23

The young SNR Cas A

New Fermi data confirm the pion bump feature => Bremsstrahlung and IC ruled out

But detection of a clear turn-off by MAGIC =>

requires a proton population with spectral index 2.2 and cut-off at 12 TeV

Cas A is not contributing to the knee in a significant way....at least currently !

Marianne Lemoine-Goumard, CTA Observatory Swiss day – 14/12/23

Fermi-LAT Galactic Extended Source Catalog

- 80 months of Pass 8 data; 10 GeV to 2 TeV
- Scan the Galactic plane (±5°) using overlapping regions
- 2independent analysis pipelines as a cross-check
- Test candidates for position, extension, alternative hypotheses
- (2 pt. sources vs 1 ext. source) and spectral curvature

=> 46 extended sources detected (Ackermann, et al. 2017, ApJ, 843, 2)

Revealing new SNRs at high energies : SNR G150.3+4.5

- Reported as an SNR using CGPS data (Gerbrandt 2014)
- Urumqi data revealed the total extent of 2.5° (Gao & Han 2014)
- Radio spectral indices variation : -0.4+/- 0.17 (SE) and -0.69 +/- 0.24 (W)

Our Fermi constraints on G150.3+4.5

- G150.3+4.5 is spectrally similar to the dynamically young and shell-type SNRs
- G150.3+4.5 has likely a low luminosity (no hint for an interaction with a molecular cloud)
- The hard spectral shape and its likely low luminosity supports the dynamically young and non-interacting scenario => near distance

But G150.3+4.5 is now detected by LHAASO!

Zeng (ICRC 2023)

Energy dependent morphology :

LHAASO-WCDA (E < 25 TeV) : spatial distribution and extension are consistent with that of the radio and the GeV band revealed by Fermi

LHAASO-KM2A (E > 25 TeV) : extended source (0.3°) spatially coincident with 4FGL J0426.5+5434

2 different sources (SNR + PWN) or MC cloud interaction ?

Constraints on G150.3+4.5 from LHAASO

- 2 scenarii proposed by Zeng (2023)
- SNR + PWN : favoured by radio spectral index variation
- SNR + MC : 3 populations : particles trapped in the SNR + escaped high energy ions + shock colliding with MC : SNR is then supposed to be radiative (48 kyrs) : contradiction with the hard GeV index

Fermi-LAT detections of radio-dim SNRs

Recent detections of extended sources outside the Galactic Plane :

- G279.0+1.1 (Araya 2020)
- G150.3+4.5 (Devin et al. 2020)
- G17.8+16.7 (Araya et al. 2022)
- G118.4+37.0 (Araya 2023)

Radio & gamma-ray extent are comparable Hard gamma-ray spectra & Low luminosity at radio energies

Population of kyr-old SNRs evolving in low density circumstellar environment (Yasuda & Lee 2019)

- CSM created by stellar wind of massive star prior to collapse
- CSM provides dense target in the early phase
- Then decrease as r⁻² => Brems and pp decrease
- At late times :
 - very low synchrotron fluxes (compared to most known SNRs)
 - SEDs are dominated by IC emission

=> Good targets for Fermí § Te∨ ínstruments

NASA press release (Feb 2013) : CR protons in SNRs

« NASA's Fermi Proves Supernova Remnants Produce Cosmic Rays » Supernova W44 & IC 443 Neutral Pion Decay Spectral Fit

Marianne Lemoine-Goumard, CTA Observatory Swiss day – 14/12/23

Looking for low energy spectral breaks

311 sources analyzed between 50 MeV and 1 GeV

77 sources show a significant break using the Galactic diffuse and the IRFs released by the LAT collaboration

56 sources are confirmed by our systematic studies (IRFs + Diffuse)

SNR is the dominant class of identified sources in this analysis

Binaries could also play a significant role

Interesting new candidates

Need to confirm them all by looking at the density of the surrounding environment

More details in Ackermann et al. 2017, ApJ, 843, 139

Population study

Among these 56 candidates :

- 10 sources are firm SNR identifications
- 3 are associated with SNRs
- 6 are SPP (SNRs or PWNe candidates)
- This makes SNRs the dominant class of sources showing spectral breaks in this analysis
- Despite their small fractions, binaries also seem to contribute significantly

Proton-Proton interaction in SNR HB21

- Similar to IC 443 and W44, HB 21 is also a mixed morphology SNR
- Age : few tens of thousands years

55°

ی ^{50°}

40°

- (Koo& Heiles 1991; Leahy & Aschenbach 1996)
- Distance : 0.8 kpc (Tatematsu et al. 1990; Koo et al. 2001)
- Fermi-LAT low energy turn over was already detected by L. Ambrogi et al. 2019
- Very significant break in our analysis : $\Delta TS_{LogP-PL} = 42$; $\Delta TS_{SBPL-PL} = 42$; $\Delta TS_{SBPL2-PL} = 34$

Spectral Energy Distribution

A star forming region : Cygnus

Region located in the Local Arm of the Galaxy at ~1.4 kpc LAT discovery of a 50-pc wide cocoon of freshly-accelerated CRs Ackermann et al. 2011 VHE detection of a counterpart HAWC J2030+409 LAT+HAWC emissions likely due to hadronic interactions Coincident with LHAASO J2032+4102 with $E_{max} = 1.42 \pm 0.13 \text{ PeV}$ Zhen Cao et al. 2021

Significant spectral break detected with our pipeline : $\Delta TS_{LogP-PL} = 120; \Delta TS_{SBPL-PL} = 106; \Delta TS_{SBPL2-PL} = 99$

SNRs with significant breaks

12 SNRs follow the gamma-ray emission expected for a proton spectrum with index=2.4 => hadronic emission favoured

Only exception is gamma Cygni

=> probable contamination by the bright pulsar PSR J2021+4026

Same SEDs rescaled at 500 MeV E² dN/dE [arbitrary units] 10^{-4} 10^{-5} W28 W3 HB9 W44 W49B Sim 147 IC 443 W51C Rosette v Cygni Monoceros HB21 MSH 15-56 10^{-6} 10² 10³ E [MeV]

Gamma-ray emission expected for a proton spectrum with index=2.4

Prospects with CTA : the Galactic Plane Survey

Building a realistic model :

- Known sources
 - TeV catalogues compilation (gammacat)
 - Fermi-LAT 3FHL
 - extrapolating Fermi-LAT pulsars
 - 2HAWC

Synthetic population of:

- SNRs (shell-like and interacting)
- PWNe
- Binaries

Sky model publicly available <u>here</u>

CTA baseline configuration 1620h of observations in 10 years 10h-30h exposure in the plane

Diffuse emission :

- Fermi bubbles
- Galactic ridge
- Interstellar emission using DRAGON CR code

Prospects for SNRs

- \cdot 31 shell + 14 interacting new synthetic SNRs
- 19 of which are considered as extended
- 5-10 times better flux sensititivity
- About 20 SNRs at d> 10 kpc
- SNRs up to other side of Galaxy (20kpc!)
- Age range from 0-10 kyrs

CTA consortium, 2023, arXiv:2310.02828 wider distribution of ages will pave the way to a more detailed population study

Excellent performances :

50 hours allow the discrimination of the emission mechanism(s) of the gamma rays (i.e., hadronic vs leptonic, or a mixture of the two) through information provided by their spatial distribution

CTA consortium, 2017, ApJ, 840, 74

Identifying PeVatron candidates in the GPS

PeVatron detection and rejection probabilities degrade with increasing source extension

With CTA GPS data (i.e. 10 h of exposure), only point-like PeVatrons with bright γ -ray emission and hard proton spectra are likely to be identified as PeVatrons

For deep observations with 100 h of CTA data, proton spectral indices $\Gamma p > 2.4$ and flux normalizations larger than 40 mCrab can be tested

=> CTA must rely on deep observations of selected PeVatron candidates

CTA consortium, 2023, Astroparticle Physics, 150

Follow-up of PeVatron candidates with moonlight observations

South CTA site will include a large SST array using silicon photomultipliers => can sustain long periods of exposure to very strong moonlight conditions

Moonlight has little impact on sensitivity for E>20 TeV

Follow-up of candidates during Moon nights?

10 h of CTA exposure under nominal conditions + 90 h of SST subarray exposure under HNSB = 50 h acquired under nominal conditions

CTA consortium, 2023, Astroparticle Physics, 150

SNRs with Flux > 50 mCrab confirmed with 10 h full array CTA + 40h SST-subarray exposure under moonlight conditions

Total observation time	$\Gamma_{\rm p} = 2.0$	$\Gamma_{\rm p} = 2.1$	$\Gamma_p = 2.2$	$\Gamma_{\rm p} = 2.3$
50 h nominal	80% ⁺⁵ ₋₆	(62±7)%	(46±7)%	24% ⁺⁷ ₋₆
100 h nominal	92% ⁺³ ₋₅	82%+5	64% ⁺⁶ ₋₇	(47±7)%
250 h nominal	$100\%^{+0}_{-2}$	96% ⁺² ₋₄	92% ⁺³ ₋₅	86%+4
50 h (10 h nominal NSB + 40 h HNSB)	68% ⁺⁶	(44±7)%	34%+7	20%+6
100 h (10 h nominal NSB + 90 h HNSB)	88%+4	64%+6	(50±7)%	$31\%^{+7}_{-6}$

Conclusions

Large variety of SNRs detected at gamma-ray energies

Protons detected within interacting SNRs and also historical remnants

The environment (dense HI cloud, CO clouds or tenuous ISM) in which the SNR is evolving is a key ingredient

Population of radio-dim SNRs detected with Fermi

TeV instruments provide important constraints on Emax

CTA PeVatron and Galactic plane survey projects are providing exciting results with >400 sources detected in the GPS

