

RFQ2 Update

L. Millar, A. Grudiev

CERN, SY-RF-MKS Section

15/05/2023

Q factor of the first RFQ was 6772, The Q factor of the new RFQ (RFQ2) seems to be ~5200.

Last week we agreed to:

- 1. Investigate surface roughness (simulate the cavity, check measured values).
- 2. Measure Q_0 vs tuner position (simulate and compare with measurement).
- 3. Investigate how individual tuners affect Q while forming the matrix which will be used for tuning.

1: Surface Roughness Investigation (Alexej's slides)

1e+03 (mm) Finite Conductivity Boundary			×
Finite Conductivity Boundary D Name: FiniteCond1 Parameters Conductivity: Relative Permeability:	efaults 58000000	Siemer	ns/m
Use Material:	vacuum		
Advanced Surface Roughness Model:	Groisse	C Huray	
Surface Roughness: Hall-Huray Surface Ratio:	Ra		•
C Set DC Thickness	0 Dbject is on outer	boundary	•
 Use classic infinite thickness model 			
	Use Defaults		
		ОК	Cancel

X

2: Q₀ vs Tuner Position

A few things to note:

- Two quadrupole modes measured.
- 8 measurements performed for both modes over the full tuner range (flange-to-flange to 45 mm retraction).
- Frequency change is ~25 MHz in this range.

Q₀ vs Tuner Position

Mode 1 (operating mode)

Mode 2

Field profiles for "nominal" tuner position shown.

Q₀ vs Tuner Position: Mode 1

Mode 1 (Fundamental)

Saturates at ~6000. 6000 Q Factor 4000 Small difference between Page 154 of RFQ1 Q_0 flange-to-flange and 1 report mentions a 2000 Qext similar measurement, mm gap. simulated Q_0 was 8000. 1.6م 1.4 370 f₀ [MHz] 360 350 20 10 30 400 Tuner Retraction [mm]

Q₀ vs Tuner Position: Mode 2

Mode 2

Results indicate the tuners are probably not the cause of the losses.

Results haven't been compared with simulations yet, this work is ongoing.

3: Effect of Individual Tuners

Effect of Individual Tuners

Idea is to measure how individual tuners affect Q₀:

- Field and surface current change as tuners are moved. By measuring Q₀ we can "localise" losses to an extent.
- Can use this data to form the matrix we need for tuning. This needs to be done anyway, no time lost!
- First 12 bead pulls performed last week, work to resume today.

home.cern