Quantum Sensing for light New Physics and Gravitational Waves

Elina Fuchs

CERN & Leibniz Universität Hannover & PTB Braunschweig

CERN Theory Colloquium June 14th, 2023

Outline

1) Motivation for light New Physics

2) Quantum Sensors

3) Atomic clocks for light new bosons

4) High-frequency GWs with optical photons

Particle questions Quantum sensing

Why light New Physics

- Spontaneous breaking of exact symmetries → massless particles
 - Approximate symmetries broken \rightarrow low-mass particles
- Small mixing with SM, e.g. dark photon, ...
- Still a lot of unexplored model and parameter space
- WDM limit OCD axion $10^{-22} \, \mathrm{eV}$ classic window 10⁻⁶ - 10⁻⁴ eV $M_{\rm pl}$ $10 M_{\odot}$ • DM options: mass scale keV GeV 100 TeV WIMP Composite DM Primordial ``Ultralight" DM ``Light" DM (Q-balls, nuggets, etc) black holes non-thermal can address SM shortcomings, dark sectors bosonic fields sterile v Tongvan Lin, TASI lecture 2019 e.g. relaxion, axion, ... can be thermal
- interplay of cosmo/astro/precision/intensity/precision frontiers

CERN TH, 14/06/2023

Quantum Sensors

Quantum Sensors

Quantum Sensors

Entanglement

Goal: enhance the measurement precision by quantum properties

Standard Quantum Limit: measurement uncertainty from the Heisenberg principle ightarrow reduced for large number of atoms as $\delta_{
m SQL} \propto N_{
m atom}^{-1/2}$

Heisenberg limit: fundamental limit

$$\delta_{\text{Heisenberg}} \propto N_{\text{entangled}}^{-1/2} N_{\text{atom}}^{-1/2} \longrightarrow N_{\text{atom}}^{-1}$$

Best if all atoms entangled!

Already used: e.g. spectroscopy of entangled Sr isotopes [Ozeri et al, PRL '19]

CERN TH, 14/06/2023

Elina Fuchs (CERN | LUHannover | PTB)

Squeezing: e.g. in axion searches

Squeezing: e.g. in axion searches

CERN TH, 14/06/2023

Elina Fuchs (CERN | LUHannover | PTB)

The virtue of frequency measurements

Nobel Prize in physics 1981 for the co-development of the laser

Goal: Turn precise frequency measurements into a tool for particle physics

.

CERN TH, 14/06/2023

Evolution of clock precision

Hz defined by #oscillations between 2 hyperfine levels of Cs

CERN TH, 14/06/2023

Elina Fuchs (CERN | LUHannover | PTB)

Evolution of clock precision

Hz defined by #oscillations between 2 hyperfine levels of Cs

Evolution of clock precision

Outline

3) Atomic clocks for light new bosons

CERN TH, 14/06/2023

Light scalar in atomic spectrum?

- Motivation: search for light new boson Φ that couples to electrons and neutrons
- **Φ** perturbs electron levels → only tiny

 frequency change

Light scalar in atomic spectrum?

- Motivation: search for light new boson Φ that couples to electrons and neutrons
- **Φ** perturbs electron levels → only tiny

 frequency change

Challenge of theory-exp comparison

- Motivation: search for light new boson Φ that couples to electrons and neutrons
- Φ perturbs electron levels → only tiny

 frequency change
- Challenge: theory, nuclear uncertainties >> uncertainties of frequency measurements

Data-driven atomic search for light scalar

- Motivation: search for light new boson Φ that couples to electrons and neutrons
- **Φ** perturbs electron levels → only tiny

 frequency change
- Challenge: theory, nuclear uncertainties >> uncertainties of frequency measurements
- Our method: Measure 2 transitions, 3 isotope pairs very precisely

CERN TH, 14/06/2023

check if 3 points (= 3 isotope pairs) on straight line

CERN TH, 14/06/2023

Elina Fuchs (CERN | LUHannover | PTB)

Ca⁺ Isotope Shift Bounds on Φ

Berengut, Budker, Delaunay, Flambaum, Frugiuele, EF, Grojean, Harnik, Ozeri, Perez, Soreq; PRL 2018

CERN TH, 14/06/2023

Solaro, Meyer, Fisher, Berengut, EF, Drewsen; PRL 2020

- Ca⁺ King plot: D-fine splitting, 4 isotope pairs
- Improvement of former Ca bound by factor 30

32

Ca⁺ Isotope Shift Bounds on Φ

Berengut, Budker, Delaunay, Flambaum, Frugiuele, EF, Grojean, Harnik, Ozeri, Perez, Soreg; PRL 2018

Solaro, Meyer, Fisher, Berengut, EF, Drewsen; PRL 2020

- **Ca⁺ King plot:** D-fine splitting, 4 isotope pairs
- Improvement of former Ca bound by factor 30
- Realistic precision: 10 mHz
 - Ca, Ba, Yb can probe untested parameter space

Ca⁺ Isotope Shift Bounds on Φ

Berengut, Budker, Delaunay, Flambaum, Frugiuele, EF, Grojean, Harnik, Ozeri, Perez, Soreq; PRL 2018

Solaro, Meyer, Fisher, Berengut, EF, Drewsen; PRL 2020

- Ca⁺ King plot: D-fine splitting, 4 isotope pairs
- Improvement of former Ca bound by factor 30
- Realistic precision: 10 mHz
 - Ca, Ba, Yb can probe untested parameter space

Particle model applications: B-L, dark photon, chameleon Frugiuele, EF, Perez, Schlaffer '16 few-electron systems: Delaunay, Frugiuele, EF, Soreq '17

CERN TH, 14/06/2023

Nonlinearity in Yb⁺ isotope shifts

[Counts, Hur, Craik, Jeon, Leung, Berengut, Geddes, Kawasaki, Jhe, Vuletić, PRL 125, 123003 (2020)] +updates MIT, Mainz, PTB

Nonlinearity in Yb⁺ isotope shifts

[Counts, Hur, Craik, Jeon, Leung, Berengut, Geddes, Kawasaki, Jhe, Vuletić, PRL 125, 123003 (2020)] +updates MIT, Mainz, PTB

Strategy: consider predicted SM NL and constrain residual NL

Elina Fuchs (CERN | LUHannover | PTB)
Generalized King plot

- replace unknowns by additional isotope shifts
- Number of clock transitions, isotopes and higher-order terms has to match

→ see also C. Delaunay's QTI talk

Generalized King plot

- replace unknowns by additional isotope shifts
- Number of clock transitions, isotopes and higher-order terms has to match

For any #transitions, isotope pairs and to combine elements: **Global fit** to all King plots

[Delaunay, EF, Kirk, Mariotti, Robbiati; in progress]

 \rightarrow see also C. Delaunay's QTI talk

m-1

Highly Charged Ions (HCI)

Figure: P. Schmidt

- Electrons removed → less multi-body effects
- QED effects amplified ~Z⁴
- Systematic shifts reduced, Stark shifts ~Z⁻⁶
 → high accuracy in traps
- electrons more closely bound
 → test shorter interaction range?

Very sensitive to time-variation of fundamental constants	test ultralight DM
Precise optical clock, e.g. Ar ¹³⁺ (2 x 10 ⁻¹⁷) [PTB&MPIK, King et	al Nature '22]

Precise isotope shift measurements possible test light mediators

HCI clock: New Physics bound

• PTB: $Ca^{14+} P_0 \rightarrow P_1 @1Hz$

A. Wilzewski, M. Wehrheim, P. Schmidt et al [preliminary]

• Combined with Ca⁺ S \rightarrow D_{5/2} @10 /20Hz

Knollmann et al PRA '19, Solaro, EF et al PRL '20

HCI clock: New Physics bound

• PTB: Ca^{14+} $P_0 \rightarrow P_1 @1Hz$

A. Wilzewski, M. Wehrheim, P. Schmidt et al [preliminary]

Combined with Ca⁺ S → D_{5/2} @10 /20Hz
 Knollmann et al PRA '19, Solaro, EF et al PRL '20

NP sensitivity **limited by isotope masses**

→ MPIK Heidelberg (K. Blaum's group) will improve precision

→trade isotope masses 3rd frequency
 → A. Mariotti's & J. Richter's QTI talk tomorrow

Isotope shifts about to test new parameter space

HCI clock: New Physics bound

• PTB: Ca^{14+} $P_0 \rightarrow P_1 @1Hz$

A. Wilzewski, M. Wehrheim, P. Schmidt et al [preliminary]

Combined with Ca⁺ S → D_{5/2} @10 /20Hz
 Knollmann et al PRA '19, Solaro, EF et al PRL '20

NP sensitivity limited by isotope masses

→ MPIK Heidelberg (K. Blaum's group) will improve precision

→trade isotope masses 3rd frequency
 → A. Mariotti's & J. Richter's QTI talk tomorrow

Isotope shifts about to test new parameter space

Variation of fundamental constants

Scalar ultralight DM
$$\phi$$

$$\mathcal{L}_{int}^{lin} = \kappa \phi \left\{ \left[\frac{d_e F_{\mu\nu} F^{\mu\nu}}{4} - d_{m_e} m_e \bar{\psi}_e \psi_e \right] - \left[\frac{d_g \beta_3 G^a_{\mu\nu} G^{a\mu\nu}}{2g_3} + \sum_{q=u,d,s} \left(d_{m_q} + \gamma_m d_g \right) m_q \bar{\psi}_q \psi_q \right] \right\}$$

 $\phi(t) \approx \phi_0 \cos(m_\phi t)$

$$\alpha \to \frac{\alpha}{1 - g_\gamma \phi} \approx \alpha (1 + g_\gamma \phi), \quad m_\psi \to m_\psi + g_\psi \phi$$

CERN TH, 14/06/2023

Ultralight scalar DM-photon coupling

CERN TH, 14/06/2023

Elina Fuchs (CERN | LUHannover | PTB)

Outline

Domcke, Kopp, EF, Bringmann 2304.10579

4) High-frequency GWs with optical photons

GW sources and detectors

Image: NASA

CERN TH, 14/06/2023

Sensitivity to GW sources

Sensitivity to GW sources

48

Pushing towards high frequencies

GW sources and detectors

Any sources for highfrequency GWs expected?

If yes, how can one detect them?

Image: NASA

CERN TH, 14/06/2023

GW sources: high frequency

Potential sources:

- 1st order phase transition in Early Universe at T>> 100 GeV
- Primordial Black Hole mergers

Image: NASA

CERN TH, 14/06/2023

GW sources: high frequency

GW sources: high frequency

- Levitated sensors
- Radio cavities

Image: NASA

CERN TH, 14/06/2023

Photon in gravitational field

Goal: compare frequency of photon measured by S and D

Free-falling observer moving with 4-velocity $\,\mu^{\mu}$ measures at D

$$\omega_{\gamma} = -g_{\mu\nu}p^{\mu}u^{\nu}$$

Photon in gravitational field

Goal: compare frequency of photon measured by S and D

Gravitational Wave: perturbs metric

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$

$$p^{\mu} = (\omega_0, \omega_0, 0, 0) + \delta p^{\mu}$$
 ~h (GW strain)

$$u^{\mu} = (1, 0, 0, 0) + \delta u^{\mu},$$

Geodesic equation →...→ master formula for **frequency change at O(h)**:

$$-\frac{\omega_0}{2} \int_0^{\lambda_D} d\lambda' \,\partial_0 \left[h_{00} + 2h_{10} + h_{11}\right]_{x^\mu = x^\mu_{\lambda',0}}$$

+
$$\left[\delta u^0 - \delta u^1\right](\lambda_D) - \left[\delta u^0 - \delta u^1\right](\lambda_S).$$

Free-falling detectors – TT frame

S and D in free fall (move freely at least in direction of photon propagation)
 → most convenient in transverse traceless (TT) gauge h^{TT}_{µ0} = 0, ∂ⁱh^{TT}_{ij} = 0, η^{ij}h^{TT}_{ij} = 0, η^{ij}h^{TT}_{ij} = 0

Rigid ruler – PD frame

• Proper-detector (PD) frame: distances an observer with a rigid ruler would measure

$$\begin{aligned} \underbrace{\frac{\omega_{\gamma}^{D} - \omega_{\gamma}^{S}}{\omega_{\gamma}^{D}}}_{\gamma} &= \frac{h_{+}}{2} \left\{ \cos \varphi_{0} - \underbrace{\omega_{g} L}_{\sin} (\omega_{g} L + \varphi_{0}) + \left(\frac{1}{2} \underbrace{\omega_{g}^{2} L^{2}}_{g} - 1\right) \cos(\omega_{g} L + \varphi_{0}) \right\} \end{aligned}$$

Enhanced sensitivity for large $\,\omega_g L \gg 1\,$?

Rigid ruler – PD frame

• Proper-detector (PD) frame: distances an observer with a rigid ruler would measure

$$\begin{aligned} \frac{\omega_{\gamma}^{D} - \omega_{\gamma}^{S}}{\omega_{\gamma}^{D}} &= \frac{h_{+}}{2} \left\{ \cos \varphi_{0} - \omega_{g} L \sin(\omega_{g} L + \varphi_{0}) + \left(\frac{1}{2} \omega_{g}^{2} L^{2} - 1\right) \cos(\omega_{g} L + \varphi_{0}) \right\} \end{aligned}$$

Enhanced sensitivity for large $\,\omega_g L \gg 1\,$?

8 no material is perfectly rigid at high frequencies!

Rigid ruler – PD frame

• Proper-detector (PD) frame: distances an observer with a rigid ruler would measure

$$\begin{aligned} \frac{\omega_{\gamma}^{D} - \omega_{\gamma}^{S}}{\omega_{\gamma}^{D}} &= \frac{h_{+}}{2} \left\{ \cos \varphi_{0} - \omega_{g} L \sin(\omega_{g} L + \varphi_{0}) + \left(\frac{1}{2} \omega_{g}^{2} L^{2} - 1\right) \cos(\omega_{g} L + \varphi_{0}) \right\} \end{aligned}$$

Enhanced sensitivity for large $\,\omega_g L \gg 1\,$?

8 no material is perfectly rigid at high frequencies!

→ generic implication for detector design: this equation is not directly applicable for $\omega_q L \gg v_s$

Idea: design filter to cut out the intense carrier line → direct detection of sidebands

 \rightarrow need to detect photons above background

Idea: design filter to cut out the intense carrier line → direct detection of sidebands

 \rightarrow need to detect photons above background

 Interference term "only" suppressed by h, but overwhelmed by background from carrier
 → modulate carrier line? (further investigation)

Idea: design filter to cut out the intense carrier line → direct detection of sidebands

 \rightarrow need to detect photons above background

 Interference term "only" suppressed by h, but overwhelmed by background from carrier
 → modulate carrier line? (further investigation)

- Narrow filter of bandwidth $\Delta\lambda~$ and suppression of carrier $\alpha_T\ll 1$

• Optical cavity tuned to sideband PTB: finesse 500,000, L=30cm, $\Delta\lambda = \mathrm{kHz}$

Idea: design filter to cut out the intense carrier line → direct detection of sidebands

 \rightarrow need to detect photons above background

- Interference term "only" suppressed by h, but overwhelmed by background from carrier
 → modulate carrier line? (further investigation)
- Narrow filter of bandwidth $\Delta\lambda~$ and suppression of carrier $\alpha_T\ll 1$
 - Optical cavity tuned to sideband PTB: finesse 500,000, L=30cm, $\Delta\lambda = \mathrm{kHz}$
 - Fiber Bragg Grating

Detection: 2) Optical clocks

Original setup:

CERN TH, 14/06/2023

Detection: 2) Optical rectifier

Rectifier: small ωL

Pass if
$$\sin \varphi_0 = \sin \omega_g t > 0$$

$$\langle \delta \omega_\gamma \rangle = h \omega_g L/(2\pi) \quad (\theta = \pi/2)$$

$$(\theta = \pi$$

Orange sideband: effect of shutter

Not only sideband, but also frequency shift of photon carrier line

Rectifier: large ωL

Pass if
$$\sin[\varphi_0 + \pi/2] > 0$$

$$\langle \delta \omega_{\gamma}^{'} \rangle = h/\pi$$

Sensitivity

Assumptions in the limits:

$$au = 1 \,\mathrm{s}, \ L = 1 \,\mathrm{m}, \ \omega_{\gamma}^S/2\pi = 2 \times 10^{14} \,\mathrm{Hz}$$

Integration time optical

 $P = \mathrm{mW}$ Laser power: need high #photons

Promising approach over broad frequency range

Complementary: LHC, EDM, cosmo

Bahl, EF, Heinemeyer, Katzy, Menen, Peters, Saimpert, Weiglein '22

70

See also

CERN Quantum Technology Initiative

CERN Accelerating science

QTI: https://quantum.cern/

ABOUT - RESEARCH - COLLABORATION QUANTUM HUB EDUCATION NEWS & EVENTS RESOURCES Q SEARCH

CERN Quantum Technology Initiative Accelerating Quantum Technology Research and Applications

Head: Alberto di Meglio

Branches:Coordinators:Quantum SensingMichael DoserQuantum ComputingSofia VallecorsaQuantum Theory & SimulationElina FuchsQuantom Communication & NetworksEdoardo Martelli

Collaboration between CERN and universities/institutes in the member (&non-member) states → visitors! Also collaboration with industry (e.g. IBM-Q)

Nov 2022: Quantum Technologies for High Energy Physics (QT4HEP) Next week: QTI Phase 2 proposal in Council 01/2024 – 12/2028: planned QTI Phase 2 with e.g. cavities→ axions, exotic atoms, quantum computing

CERN TH, 14/06/2023

CERN Quantum Technology Initiative

CERN Accelerating science

QTI: https://quantum.cern/

Collaboration between CERN and universities/institutes in the member (&non-member) states → visitors! Also collaboration with industry (e.g. IBM-Q)

Nov 2022: Quantum Technologies for High Energy Physics (QT4HEP) Next week: QTI Phase 2 proposal in Council 01/2024 – 12/2028: planned QTI Phase 2 with e.g. cavities→ axions, exotic atoms, quantum computing

CERN TH, 14/06/2023

Quantum sensing in Phase 2

QTI Phase 2 Vision

Particle questions Quantum sensing

Particle questions

Quantum sensing

Well-motivated scenarios with light, feeble NP require novel searches

 \rightarrow

Quantum sensors can enable measurement & enhance the sensitivity

Isotope shifts of atomic clocks probe light new bosons

ightarrow High-frequency GWs: proposal to look for sidebands and enable frequency shift

CERN TH, 14/06/2023

Well-motivated scenarios with light, feeble NP require novel searches

 \rightarrow

Quantum sensors can enable measurement & enhance the sensitivity

Isotope shifts of atomic clocks probe light new bosons

ightarrow High-frequency GWs: proposal to look for sidebands and enable frequency shift

Exciting developments across frontiers over past few years and expected in the very near future

CERN TH, 14/06/2023

Well-motivated scenarios with light, feeble NP require novel searches

 \rightarrow

Quantum sensors can enable measurement & enhance the sensitivity

Isotope shifts of atomic clocks probe light new bosons

\rightarrow High-frequency GWs: proposal to look for sidebands and enable frequency shift

CERN is an exciting place for QT4HEP with unique opportunities for breakthroughs OUANTUM TECHNOLOGY INITIATIVE CERN TH, 14/06/2023 Elina Fuchs (4)

Exciting developments across frontiers over past few years and expected in the very near future

Well-motivated scenarios with light, feeble NP require novel searches

Quantum sensors can enable measurement & enhance the sensitivity

Isotope shifts of atomic clocks probe light new bosons

\rightarrow High-frequency GWs: proposal to look for sidebands and enable frequency shift

CERN is an exciting place for QT4HEP with unique opportunities for breakthroughs OUANTUM TECHNOLOGY INITIATIVE CERN TH, 14/06/2023 Elina Fuchs (

Exciting developments across frontiers over past few years and expected in the very near future

APPENDIX

NP shifts of atomic spectra

Energy shift due to new long-range interaction

$$V_{\rm NP} = \frac{y_e y_n}{4\pi r} e^{-m_\phi r}$$

e e e
$$\phi$$

$$m\nu_{2} = F_{21}m\nu_{1} + K_{21} - y_{e}y_{n}AA'(X_{2} - X_{1}F_{21})$$

$$NP \phi \text{ coupling to electrons and neutrons}$$

$$theory input: NP electronic coefficients overlap of wavefunctions with NP potential $X_{i} = X_{i}(m_{\phi})$$$

Goal: bound on y_ey_n and m_oin **data-driven** approach

- Deviations from straight line \rightarrow triangle
- Area = measure of NL $m\nu_2$

- Deviations from straight line → triangle
- Area = measure of NL $m\nu_2$

- Linearity plane: linear combinations of FS+MS
- Volume of parallelepiped = measure of NL

- Deviations from straight line → triangle
- Area = measure of NL $m\nu_2$

- Linearity plane: linear combinations of FS+MS
- Volume of parallelepiped = measure of NL

- Deviations from straight line → triangle
- Area = measure of NL $m\nu_2$

- Linearity plane: linear combinations of FS+MS
- Volume of parallelepiped = measure of NL

NP King linearity violation (KLV)

▶ NP isotope dependence: $\vec{h} \simeq -A\vec{A'}$ amu (for linear $\phi - N$ coupling)

new term in King relation

[Berengut, Budker, Delaunay, Flambaum, Frugiuele, EF, Grojean, Harnik, Ozeri, Perez, Soreq, PRL 2018]

CERN TH, 14/06/2023

NP King linearity violation (KLV)

▶ NP isotope dependence: $\vec{h} \simeq -A\vec{A'}$ amu (for linear $\phi - N$ coupling)

new term in King relation

Developed isotope vector space

NP can break linearity: non-linearity measure $\rm NL_{\rm NP}$

$$\mathrm{NL}_{\mathrm{NP}} = \left[\overrightarrow{m\mu} \times (X_2 - F_{21}X_1) \ \overrightarrow{m\nu}_1\right] \cdot \vec{h}$$

[Berengut, Budker, Delaunay, Flambaum, Frugiuele, EF, Grojean, Harnik, Ozeri, Perez, Soreq, PRL 2018]

CERN TH, 14/06/2023

Constraint on mass and couplings

[Berengut, Budker, Delaunay, Flambaum, Frugiuele, EF, Grojean, Harnik Ozeri, Perez, Soreq] PRL 120 (2018) 091801

Constraint on mass and couplings

[Berengut, Budker, Delaunay, Flambaum, Frugiuele, EF, Grojean, Harnik Ozeri, Perez, Soreq] PRL 120 (2018) 091801

+ uncertainty propagation of frequencies and masses

Constraint on mass and couplings

Implications for NP models

CERN TH, 14/06/2023

Caveat: Linearity breaking in SM

- Standard Model contribution to King nonlinearity calculated: for some transitions [Flambaum, Geddes, Viatkina '18] in Ca⁺, Sr⁺, Ba⁺, Yb⁺, Hg⁺
- SM nonlinearities: dependence on nuclear radii [Müller, Yerokhin, Artemyev, Surzhykov '21]
- Few-electron ions [Debierre, Oreshkina, Valuev, Harman, Keitel '22]

CERN TH, 14/06/2023

Caveat: Linearity breaking in SM

- Standard Model contribution to King nonlinearity calculated: for some transitions [Flambaum, Geddes, Viatkina '18] in Ca⁺, Sr⁺, Ba⁺, Yb⁺, Hg⁺
- SM nonlinearities: dependence on nuclear radii [Müller, Yerokhin, Artemyev, Surzhykov '21]
- Few-electron ions [Debierre, Oreshkina, Valuev, Harman, Keitel '22]

Strategy: consider predicted SM NL and constrain residual NL

CERN TH, 14/06/2023

Very precise Ca⁺ King Plot

CERN TH, 14/06/2023

New Ca⁺ Isotope Shift Bounds on Φ

[Solaro, Meyer, Fisher, Berengut, EF, Drewsen, PRL 125, 123003 (2020)]

- New 4D projection method for 4 isotope pairs
- Improvement of former Ca bound by factor 30
- Limited by D-fine precision
- Same transitions in Ba, Yb with 20 Hz comparable to (g-2)_e*n-scatt
- Anticipated precision: **10 mHz**
 - Ca, Ba, Yb can probe untested parameter space

New Ca⁺ Isotope Shift Bounds on Φ

[Solaro, Meyer, Fisher, Berengut, EF, Drewsen, PRL 125, 123003 (2020)]

- New 4D projection method for 4 isotope pairs
- Improvement of former Ca bound by factor 30
- Limited by D-fine precision
- Same transitions in Ba, Yb with 20 Hz comparable to (g-2)_e*n-scatt
- Anticipated precision: **10 mHz**
 - Ca, Ba, Yb can probe untested parameter space

CERN TH, 14/06/2023

Scrutinizing the Yb anomaly

Figueroa, Berengut, Dzuba, Flambaum, Budker, Antypas, PRL 2022

New Yb/Yb+ King plot: reduced nonlinearity could be explained by **nuclear deformation**

Hur, Craik, Counts, Berengut, Vuletic et al, '22

 $S \rightarrow F$ octupole transition of Yb+ combined with previous Yb+ and Yb IS: - 4.3 sigma for 2^{nd} source

- future: 4 orders improvement of exp. uncertainty to sub-Hz level as in simultaneously trapped Sr⁺

Flambaum, Samsonov, Tan, Viatkina '21 Nuclear polarization effects in atoms and ions

Fürst, Zeh, Dreissen, Kulosa, Kalincev, Lange, Benkler, Huntemann, Peik, Mehlstäubler PRL 2020 - **Improved measurement** of 411nm (E2) and 467nm (E3) transitions in ¹⁷²Yb⁺ at few Hz - further with isotope shifts of S-D, S-F at sub-10-Hz precision → update coming soon

Highly charged ion (HCI) King plot

[Rehbehn, Rosner, Bekker, Berengut, Schmidt, King, Micke, Gu, Müller, Suryhzkov, Crespo Lopez-Urrutia '21]

[King, Spieß, Micke, Wilzewski, Leopold, Benkler, Lange, Huntemann, Suryhzkov, Zerokhin, Crespo, Schmidt; Nature 611 (2022)]

- HCIs: less electrons
- Generalized King plot
- Projected bounds assuming no isotope mass uncertainties

Very promising combination of singly and highly charged Ca ions

→ find optimal combination
 → ongoing: replacement of isotope masses
 AND higher-order mass shift
 [Berengut, EF, Mariotti, Richter, Surzhykov, Viatkina; work in progess]

CERN TH, 14/06/2023

Elina Fuchs (CERN | LUHannover | PTB)

See also Hydrogen-like ions [Debierre, Keitel, Harman '22]

Few-electron systems

- Data and theory very precise
- Need only ≥1transition, ≥1
 isotope
- Isotope shifts: need p-radius
- Direct frequency: combine with (g-2), Rydberg or 2nd transition
 - cf [Karshenboim '01, '10] [Jaeckel, Roy '10] [Pachucki, Patkos, Yerokhin '17]

New Ca⁺ Isotope Shift Measurements

[Solaro, Meyer, Fisher, Berengut, EF, Drewsen, PRL 125, 123003 (2020)]

 Very precise measurement of D-fine splitting of Ca⁺ at Aarhus (Denmark)

 $D_{3/2}$ - $D_{5/2}$ at 20 Hz \rightarrow precision ~10⁻⁶

• S-D_{5/2} at 2 kHz \rightarrow precision ~10⁻⁷

[Knollmann, Patel, Doret, PRA 2019] ~10⁻⁹

[Solaro, Meyer, Fisher, DePalatis, Drewsen (Aarhus University), PhysRevLett.120.253601]

5 isotopes measured: Ca 40, 42, 44, 46, 48 → **4 pairs**, i.e. 1 more than required

Cavs Yb King plots - compatibility

- Reach same sensitivity
 - Yb 10x more susceptible to NP
 - Ca 10x more precisely measured
- non/linearity no contradiction
 - different nuclear physics

Cavs Yb King plots - compatibility

- Reach same sensitivity
 - Yb 10x more susceptible to NP
 - Ca 10x more precisely measured
- non/linearity no contradiction
 - different nuclear physics
- *if* Yb-NL assumed as *purely* New Physics: → necessary coupling range is
- partly excluded by Ca
- excluded by (g-2)_e*n-scattering

CERN TH, 14/06/2023

Generalised King Plot

NP electronic overlap

Electronic NP coefficient: overlap of wavefunctions of initial and final states (a, b) with the NP (Yukawa) potential

Perturbative approximation:

$$X_{i} = \int d^{3}r \frac{e^{-m_{\phi}r}}{4\pi r} \left[|\Psi_{b}(r)|^{2} - |\Psi_{a}(r)|^{2} \right]$$

Contact-Interaction + Multibody Perturbation Theory (CI+MBPT)

 $X_{i} = \frac{1}{A - Z} \left. \frac{d\epsilon_{ab}}{d\alpha_{\rm NP}} \right|_{\alpha_{\rm NP} = 0} \qquad \qquad \begin{array}{l} \text{Difference of energy} \\ \text{levels as a function of} \\ \mathbf{\alpha}_{\rm NP} \end{array}$

Chameleon search with King plot

Expect points in plane

[Duque-Mesa, Firstenberg, EF, Geller, Ozeri, Perez, Shpilman; work in progress]

Further NP atomic precision probes

- Rydberg states
- Few-electron systems (H, He, D, Li,...)
- Tests of Local Lorentz invariance violation

Atomic clock key figures

Characterize the performance of a clock by its relative frequency change *Goals:* stable and accurate clock

- L. Field shifts e.g. Zeeman shift and black body shift
- 2. Motional shifts e.g. Relativistic Doppler

$$\frac{\Delta f}{f} = \frac{\left\langle \vec{v} \cdot \hat{k} \right\rangle}{c} - \frac{\left\langle v^2 \right\rangle}{2c^2} - \frac{\left\langle \vec{v} \cdot \hat{k} \right\rangle^2}{2c^2} + \cdots$$

See D. Hume's talk at ECFA workhop '21

CERN TH, 14/06/2023

 $\sigma_{\mathcal{Y}}(\tau) \cong \frac{1}{Q} \frac{1}{SNR} \sqrt{\frac{T_C}{\tau}}$

Sr lattice clock

- 1-dimensional Sr optical lattice clock: measured linear frequency gradient inside a single atomic sample to a relative uncertainty of phenomenal **7.6 x 10⁻²¹**
- 100,000 ultracold Sr atoms in an optical lattice
- narrow $S_0 \rightarrow P_0$ transition

٠

- magic trap depth → suppress collisional shifts
- fundamental to achieve this precision: the record coherence time of 37s
- frequency comparison within one sample: 2 uncorrelated subregions separated by a mm
- Test gravitational time dilation at mm scale.

Noise

- Quantum projection noise:
 - Discrete measurement outcomes 0,1 with probabilities p, (1-p)
 - Experiment repeated N times \rightarrow
 - Variance of binomial distribution

$$p = \frac{N_1}{N}$$
$$\sigma_{p,\text{quantum}}^2 = \frac{1}{N}p(1-p).$$

- Decoherence
 - Decoherence & relaxation \rightarrow random transitions
 - \rightarrow reduced probability $\delta p_{obs}(t) = \delta p(t) e^{-\chi(t)}$,

$$\chi(t)=(\Gamma t)^a,$$

• Decoherence time/ decay rate $\Gamma = T_{\chi}^{-1} \rightarrow \max$ sensing time