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Introduction: Deep Learning Enhanced Spatial Resolution of the 
MÖNCH Detector

MÖNCH key specifications

• 25 um hybrid pixel detector with silicon sensor

• Charge integrating mode, 6 kHz frame rate 

Previous study

• Use deep learning to reconstruct incident position of 
each 200 keV electron

• To learn the nature of electron multiple scattering
and charge diffusion

• Spatial resolution improved by a factor of three [1]

• Experiment-based training: 0.60 pixel

• Simulation-based training: 0.70 pixel

• Potential in electron microscopy applications
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[1] X. Xie et al 2024 JINST 19 C01020

https://indico.cern.ch/event/1247911/contributions/5394508/


Introduction: Discrepancy between Simulation and 
Measurements

Simulation samples still matter

• Availability and flexibility

• No special experimental setup required

• Different electron energies

• Different detector designs

• More information

• 3D electron trajectory in silicon sensor

Single Pixel Energy Spectrum for electrons

• Pixels selected from 200 keV electron clusters

• Simulation tool: Allpix2

• Projection propagation module to simulate drift 
and diffusion of charge carriers
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Introduction: Discrepancy in Single Pixel Energy Spectrum for X-
rays

Further investigation using X-ray

• Simplest case without particle trajectory

• Energy deposited in a point-like region

Pixels selected from 3x3-pixel clusters

• Same Allpix2 simulation setup

• Measured using X-ray tube

Discrepancy remains

• Simulation overestimates pixel energy

• Chare sharing is underestimated

• Discrepancy related to deposited energy
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Cu 𝐸k𝛼 = 8.05 keV

Cu 𝐸k𝛽 = 8.91 keV

Reason: absence of repulsion simulation



Introduction: Charge Carrier Dynamics in Silicon

Continuity equation for charge carriers in silicon:  
𝜕𝑝

𝜕𝑡
= 𝐷Δ𝑝 − ∇ ⋅ (𝑝𝜇𝐸)

• 𝑝(𝑟, 𝑡): charge carrier density

• 𝐷 = 𝜇
𝑘𝑇

𝑞
, Einstein equation

• Drift treated independently

By neglecting the charge repulsion

• Simplified to be 
𝜕𝑝

𝜕𝑡
= 𝐷Δ𝑝

• 1D solution 𝑝(𝑥, 𝑡)~𝑁(0, 2𝐷𝑡)

• Implemented in current allpix2 propagation modules

But not the case for HPD for X-ray/electron detection

• Deposited energy up to several dozen keV

• Charge repulsion is not negligible
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Introduction: Results of the Optimized Simulation

With repulsion simulated, more consistent Monte-Carlo simulation achieved

7

without repulsion with repulsion

Cu 𝐸k𝛼 = 8.05 keV

Cu 𝐸k𝛽 = 8.91 keV

Cu 𝐸k𝛼 = 8.05 keV
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Optimizing Simulation: Recipe of Time-stepping MC Simulation
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1. Photon absorption at 𝒛 = 𝒉
• Empirical gaussian model for initial charge 

cloud: 𝜎 = 0.0044 ⋅ 𝐸1.75 μm [1]
• 𝜎 = 0.17 μm for 8.05 keV X-ray

2. Charge cloud drift
• Drift of cloud center: 𝑧𝑡+𝛿𝑡 = 𝑧𝑡 + 𝜇𝐸𝑧𝛿𝑡

3. Propagation of a charge carrier at radius of 𝒓

• Diffusion: 𝑟𝑡+𝛿𝑡 = 𝑟𝑡 ± 6𝐷𝛿𝑡

• Repulsion: 𝑟𝑡+𝛿𝑡 = 𝑟𝑡 + 𝜇𝐸𝑟𝛿𝑡

• 𝐸𝑟 =
𝑄 𝑟

4𝜋𝜖𝑟2
, 𝑄 𝑟 = σ𝑟𝑖<𝑟

𝑞𝑖

4. Simulation finished
• When charge cloud center reaches sensor 

bottom 𝐻 = 320 μm

X-ray

Charge 
cloud

[1] M.Lundqvist, Silicon strip detectors for scanned multi-slit X-ray imaging, 
Ph.D. Thesis, Royal Instituteof Technology(KTH), Stockholm, 2003.
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Optimizing Simulation: Intermediate Results
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Chi2/Ndf = 1.0
𝛼 = 2.14
𝛽 = 12.31

Charge carriers follow the generalized 
gaussian distribution (𝐆𝐆𝐃)

𝑝(𝑥)~ 
𝛽

2𝛼Γ
1

𝛽

Exp(−|𝑥 /𝛼 𝛽

Example: absorption depth 𝒉 = 𝟐. 𝟓 𝛍𝐦

• With repulsion, final RMS = 8.46 μm

• Without repulsion, final RMS = 7.68 μm

𝐸 = 8.05 keV
ℎ = 2.5 μm

𝐸 = 8.05 keV
ℎ = 2.5 μm

With repulsion



Validation: Forming 3x3-pixel Cluster

For simulation

1. Simulation conducted at different ℎ every 5 μm

2. X-ray absorption depth ℎ sampled from Exp(−
ℎ

𝜆
)

3. Charge carriers 𝑥, 𝑦 sampled from GGD(𝛼, 𝛽)

4. Add noise (~0.13 keV) and form a 3x3-pixel cluster

For measurement

• Pedestal subtracted

• Pixel-wise gain calibration applied

• Cluster finding

Cluster energy window: (𝐸kα − 0.5 keV, 𝐸kα + 0.5 keV)
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Validation: Pixel Energy Spectrum

11

Cu 𝐸k𝛼 = 8.05 keV
Cu 𝐸k𝛽 = 8.91 keV

Ag 𝐸k𝛼 = 22.16 keV
Ag 𝐸k𝛽 = 24.94 keV

with repulsionwith repulsion



Validation: Charge Weighted Center 𝛈𝒙, 𝛈𝒚
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Meas.

Cu 𝐸k𝛼 = 8.05 keV

Cu 𝐸k𝛽 = 8.91 keV

3x3-pixel 
cluster

η𝑥 =
Σ𝑖𝑄𝑖⋅𝑥𝑖

Σ𝑖𝑄𝑖
[1]

η𝑦 =
Σ𝑖𝑄𝑖⋅𝑦𝑖

Σ𝑖𝑄𝑖

[1] E. Belau, et al. (1983). Nucl. Instrum. Methods 
Phys. Res. 214, 253–260.



Discussion

Source of remaining mismatch

• Spherical symmetry assumption for charge cloud

• Gradient of 𝐸𝑧 inside charge cloud ignored

• Asymmetry ignored when charge cloud approaching sensor bottom 

• Uncertainty in measurements and modeling

• Mobility 𝜇, noise modeling

• Gain uncertainty and non-linearity 

• Pixel crosstalk

To implement for electron simulation

• Parameterization of 𝛼, 𝛽 as functions of absorption depth and 𝐸deposit

• Repulsion between adjacent charge clouds
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Summary

Charge sharing simulation has been optimized

• Repulsion simulation should be considered for small pixel HPD for X-rays/electrons

• Good agreements obtained between measurements and the proposed simulation

To implement as an Allpix2 module

• Better quality of simulation samples for deep learning

• Help optimize detector design by exploiting charge sharing
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Thank You!
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Backup Validation: Charge Weighted Center 𝛈𝒚
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without repulsion with repulsion

Cu 𝐸k𝛼 = 8.05 keV
Cu 𝐸k𝛽 = 8.91 keV



Backup Optimizing Simulation: Preparations

Coordinates system conventions

• 𝑥𝑦 plane is the sensor plane; 𝑧 axis points backward

• Charge center (0, 0, 𝑧center) drifts from (0, 0, ℎ) to (0, 0, 𝐻)

• Absorption depth ℎ; sensor thickness 𝐻 = 320 μm

Drifting electrical field

• 𝐸𝑧(𝑧) =
𝑉bias−𝑉dep

𝐻
+

2𝑉dep

𝐻
⋅
𝑧

𝐻

• 𝑉dep = 30 V, 𝑉bias = 90 V

Initial charge cloud distribution

• 𝜎 = 0.0044 ⋅ 𝐸deposit
1.75 μm, 

• Jacoboni-Canali mobility model

• 𝜇 𝐸 =
𝑣𝑚

𝐸𝑐

1

1+ 𝐸/𝐸𝑐
𝛽 1/𝛽
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Backup Optimizing Simulation: Recipe of Time Stepping Monte 
Carlo Simulation

Dynamics of a charge carrier at (𝑥, 𝑦, 𝑧 + 𝑧center) while the charge center at (0, 0, 𝑧center)

• 𝑬 𝑥, 𝑦, 𝑧 + 𝑧0 = 𝑬𝐫𝐞𝐩𝐮𝐥𝐬𝐢𝐨𝐧 + 𝑬𝐝𝐫𝐢𝐟𝐭

• 𝑬𝐫𝐞𝐩𝐮𝐥𝐬𝐢𝐨𝐧(𝑥, 𝑦, 𝑧 + 𝑧0) =
𝑄 𝑟

4𝜋𝜖𝑟2
(
𝑥

𝑟
𝒆𝒙 +

𝑦

𝑟
𝒆𝒚 +

𝑧

𝑟
𝒆𝒛)

• 𝑄 𝑟 = σ
𝑖 where 𝑥𝑖

2+𝑦𝑖
2+𝑧𝑖

2<𝑟
𝑞𝑖

• Hold under the assumption of spherical symmetry of charge cloud

• 𝑬𝐝𝐫𝐢𝐟𝐭 𝑧 + 𝑧center ≅ 𝑬𝐝𝐫𝐢𝐟𝐭 𝑧center =
𝑉bias−𝑉dep

𝐻
+

2𝑉dep

𝐻

𝑧center

𝐻
𝒆𝒛

Mobility 𝜇 |𝑬| =
𝑣𝑚

𝐸𝑐

1

1+ |𝑬|/𝐸𝑐
𝛽 1/𝛽

Coordinates updating for each charge carrier

• Repulsion: 𝑥 𝑡 + 𝛿𝑡 = 𝑥 𝑡 + 𝜇 𝑬 |𝑬|
𝑥

𝑥2+𝑦2+𝑧2
𝛿𝑡, 𝛿𝑡 ≔ 0.01 ns

• Diffusion: 𝑥 𝑡 + 𝛿𝑡 = 𝑥 𝑡 ± 2𝐷𝛿𝑡, 𝐷 = 𝜇( 𝑬 )
𝑘𝑇

𝑞
modelled as random walk
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