

The scintillating fiber tracker of the NUSES-ZIRÈ pathfinder satellite

Istituto Nazionale di Fisica Nucleare

Roberta Pillera on behalf of the **NUSES** Collaboration

> 30th June - 4th July 2024 Lisbon, Portugal

roberta.pillera@ba.infn.it

THE NUSES MISSION

A small pathfinder satellite for new technologies

- Development of new observational techniques, sensors (e.g. SiPMs) and related electronics/DAQ for space missions;
- Scientific collaboration among GSSI-INFN and TAS-I
- Italian lead mission
- Funded by Italian government and ASI
- Two payloads:
 - o Terzina
 - o Ziré
- Payload delivery: end 2025
- Launch: 2026

iWoRiD 2024

Roberta Pillera

clear Instruments

THE NUSES COLLABORATION

60+ persons from many institutions. Large expertise (and synergies) from space missions/R&D: AMS, DAMPE, eASTROGAM, Fermi, LIMADOU, GAPS, HERD, PAMELA, POEMMA, SPB2, ...

Italian Institutes:

- Gran Sasso Science Institute
- Laboratori Nazionali del Gran Sasso
- Università dell'Aquila
- Università di Roma "Tor Vergata" and INFN-Roma2
- Università di Torino and INFN Torino
- Università di Trento and INFN-TIFPA
- Università di Bari and INFN Bari
- Università di Padova and INFN Padova
- Università "Federico II" and INFN Napoli
- Università del Salento and INFN Lecce

Other Institutes:

- University of Geneva
- University of Chicago
- Interests from other US institutions, ...

iWoRiD 2024

Roberta Pillera

stituto Nazionale di Fisica Nuclear

THE PAYLOADS

Science goals

Zirè

- Measure the flux (E<300 MeV) of cosmic e-, p and light nuclei of solar/galactic origin;
- Study of the cosmic radiation variability (Van Allen belt system);
- Possible correlations with seismic activity due to Magnetosphere-Ionosphere-Lithosphere Coupling (MILC);
- Detection of 0.1 30 MeV photons for study of transient and stable gamma sources;
- Monitoring of near-Earth space environment

Terzina

Pathfinder for future missions committed to the UHE cosmic rays and neutrino astronomy through space-based atmospheric Cherenkov light detection.

Roberta Pillera

Development of new observational techniques, testing new sensors (e.g. **SiPM**) and related electronics/DAQ for space missions. New solutions for satellite platforms.

iWoRiD 2024

uto Nazionale di Fisica Nuclea

THE SATELLITE ORBIT

Ballistic Low Earth Orbit (LEO) with high inclination, sunsynchronous dusk-dawn orbit

- Altitude ~550 km
- Inclination = 97,8°
- LTAN = 18:00

iWoRiD 2024

Roberta Pillera

THE ZIRÉ DETECTOR

Completely based on scintillators & SiPMs

ACS (Anticoincidence System)

- Charged background rejection
- Plastic scintillators

FTK Fiber TracKer

- Fast trigger
- Particle tracking
- PID/energy loss measurement

PST (Plastic Scintillator Tower)

PID

iWoRiD 2024

Partial energy measurement

CALOg (Calorimeter gamma)

- Energy measurement
- LYSO/GAGG scintillator crystals

Fiber Tracker module (FTK) **Astroparticle Physics Bari Research group (INFN, Poliba,**

ACS

PST

Uniba)

FTK

stituto Nazionale di Fisica Nuclear

ACS

CALOg

Preliminary

Roberta Pillera

Istituto Nazionale di Fisica Nucleare

ZIRÉ EXPECTED PERFORMANCE

e & p acceptance

γ-ray effective area

- CALOg will be also used for the study of low-energy γ rays between 10 keV and 30 MeV.
- **Two entrance windows** surrounding the CALOg for this purpose.

Roberta Pillera

7

stituto Nazionale di Fisica Nucleare

THE FIBER TRACKER

THE ZIRÉ FIBER TRACKER

Plastic scintillator fibers with SiPM array readout

Fiber tracker tasks

- provide a fast and efficient trigger
- measure the particle entry point
- measure the deposited charge
- contribute to PID

Single X-Y plane section

FTK layout

- 3 X-Y planes
- One plane with double-sided readout for trigger and redundancy
- Layer surface: ~10 cm x 10 cm

iWoRiD 2024

FIBER TRACKER PROTOTYPES

Fiber tracker prototype for the NUSES-Ziré detector

- Several modules: X-Y fiber views
- Each view: two staggered round scintillating fiber ribbons
 - o Kuraray/Saint-Gobain
 - $\circ~500~\mu m$ and 750 μm diameter
- SiPM array readout: Hamamatsu S13552, 128 channels
- Layer width: about 3.25 cm
- Designed and assembled @INFN Bari

Tests and characterization with custom Front End Board designed @INFN Bari

 Weeroc/Omega ASIC PETIROC2A as front-end electronics

Roberta Pillera

- Ziré preliminary choice • **OR-4** readout
- 1 mm pitch equivalent
- 32 readout channels/array

Pillera R. et al, *Characterization of a light fiber tracker* prototype with SiPM array readout, 2023 9th IWASI), IEEE <u>DOI 10.1109/IWASI58316.2023.10164306</u>

iWoRiD 2024

10

to Nazionale di Fisica Nuclear

250 µm

ZIRETTINO PROTOTYPE

Reduced scale Ziré prototype

- Layout
 - 1 fully equipped FTK plane (750 μm fiber Ø)
 - o 8 PST layers
 - 8 CALOg cubes (4 LYSO / 4 GAGG)
 - o 5 ACS tiles
- FTK mechanics designed by SOPHIA based on FTK prototypes
- Flight model electronics prototype developed by Nuclear Instruments
 - SiPM readout with CITIROC ASIC by Omega/Weeroc

Beam tests @CERN

- 1. PS pions 10 GeV/c
 - all FTK views equipped with S13552 (~60 μm cell pitch)
- 2. SPS Pb 150 GeV/c/A A/Z=2
 - 2 views \$13552-10 (10 µm cell pitch)

iWoRiD 2024

FTK CHARACTERIZATION

- External FTK modules used for tracking and alligment External tracking system (FTK prototypes)
- Residuals in Zirettino-FTK computed with respect to tracks

Timing

One of FTK tasks: fast trigger

FTK prototype with PETIROC-FEB readout

PETIROC -> single channel TDC with 40 ps time resolution

Timing measurements with 10 GeV/c pion beam हुँ at CERN PS

Efficiency

External FTK

Zirettino-FTK

efficiency

evaluation

- Arrival time FWHM 1.89 ns
- Tight coincidence window can be set to provide a fast trigger for other Ziré subsystems.

iWoRiD 2024

PARTICLE IDENTIFICATION (1) Beam tests @ CERN PS and SPS

FTK HPK-S13552 Pixel pitch: 57.5 × 62.5 μm

Caveats:

- Calibration not perfect
- SiPM saturation effects
- Electronics saturation effects
- Birks for higher Z
- Different beam tests in 2023:
 - o different facilities and setups
 - o different ASIC configurations
 - \circ different V_{bias}
 - o different Temperature

iWoRiD 2024

Roberta Pillera

13

PARTICLE IDENTIFICATION (2) Beam tests @ CERN PS and SPS

FTK HPK-S13552 Pixel pitch: 57.5 × 62.5 µm

Caveats:

- Calibration not perfect
- SiPM saturation effects correction
- Electronics saturation effects
- Birks for higher Z
- Different beam tests in 2023:
 - o different facilities and setups
 - o different ASIC configurations
 - \circ different V_{bias}
 - o different Temperature

iWoRiD 2024

PARTICLE IDENTIFICATION (3) Beam test @ CERN SPS

FTK HPK-S13552-10 Pixel pitch: 10 µm

Caveats:

- Calibration not perfect
- SiPM saturation effects
- Electronics saturation effects
- Birks for higher Z
- Different beam tests in 2023:
 - o different facilities and setups
 - o different ASIC configurations
 - \circ different V_{bias}
 - o different Temperature

iWoRiD 2024

Roberta Pillera

15

uto Nazionale di Fisica Nuclear

VIBRATIONAL TESTS

Ziré structural model (SM)

- Zirettino FTK (1module/plane)
 - Fibers glued at module frame, no glue on other parts
- SM FTK (3 modules/planes)
 - o 1 module with glue all over the fibers
 - 1 module with additional airex panel for more stability
 - o 1 empty frame
 - o PWBs without sensors

Vibrational tests of the whole spacecraft performed at Thales-Alenia in April 2024

stituto Nazionale di Fisica Nucleare

FTK accelerometers put on top of fiber plane and on frame

- No visible damage on the fibers
- Post vibration functional tests in progress

iWoRiD 2024

CONCLUSIONS

- NUSES will allow a test in orbit of a fiber tracker with SiPM readout
- Tests on FTK prototypes give promising results
 - High efficiency
 - Good space resolution
 - Excellent PID
- NUSES launch foreseen in 2026
 - Fiber tracker technology space-qualification

