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CMS: Compact Muon Solenoid
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Operating at the Large Hadron Collider (LHC), CERN 

• Multi-purpose experiment: Higgs sector physics, Standard Model (SM) precision 
measurements, searches Beyond the SM (BSM)… 

• Several sub-detectors nested around the LHC collision interaction point

• Trajectory of the charged particles bent by 
the 3.8 T magnetic field  

• Nature, energy and direction of the stable 
particles deduced from the combined 
information of all the sub-detectors 

• Higher-level objects (jets, Ç leptons, missing 
transverse momentum) built up from 
detected particles 



C. Amendola (CERN) iWoRiD 2024 July 1st, 2024

LHC operations target:  

• Large center-of-mass energy to produce heavy particles (e.g. mH ~ 125 GeV) 

• Large number of collisions to probe rare processes (e.g. Ãgg³HH ~ 30 fb) 

Towards the High-Luminosity LHC (HL-LHC)
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High luminosity implies: 

• Exposure of active material, readout sensors, and electronics to high radiation dose  

• Large pileup, affecting the vertex and object reconstruction offline and at trigger level
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High luminosity implies: 

• Exposure of active material, readout sensors, and electronics to high radiation dose  

• Large pileup, affecting the vertex and object reconstruction offline and at trigger level

The CMS subsystems will be upgraded to cope with the harsher radiation environment 

Pileup 140-200 at HL-LHC  

(over 2x w.r.t. LHC busiest 
interactions)
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A new forward calorimeter
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• Existing endcap electromagnetic calorimeter (PbWO4) and 
hadronic calorimeter (plastic scintillator) designed for 500 fb-1 
integrated luminosity  

• To be replaced by a novel radiation-hard calorimeter, which must 
withstand:  

• Fluence up to ~ 1016 neq/cm2  

• Absorbed dose up to 2 MGy 

Physics performance needs: 

• High 3D spacial granularity and geometric acceptance on forward 
physics 

• Precision timing (sub-nanosecond) to contribute to the 
improvement of vertex resolution 

Figure 1.2: Fluence, parameterized as a fluence of 1 MeV equivalent neutrons, accumulated

BEAM LINE
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• Silicon sensors operate adequately up to ~ 1.5 x 1016 neq/cm2 

• Variable thickness 120/200/300 ¿m to minimise 
radiation-induced noise 

• Plastic scintillator tiles (SiPM readout) in the area with 
fluence < 4 x 1013 neq/cm2 

• Operational temperature of -35ºC  

Unprecedented transverse and longitudinal readout segmentation: 

• 6M silicon pads of size 0.6 or 1.2 cm2 (620 m2 overall) 

• 240k plastic scintillator tiles 4 to 30 cm2 (370 m2 overall)

Figure 1.2: Fluence, parameterized as a fluence of 1 MeV equivalent neutrons, accumulated
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New silicon imaging electromagnetic calorimeter + 
Si and Si+Scintillator layers hadronic section

The High-Granularity Calorimeter (HGCAL) project
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Key challenges

• Complex engineering (mechanics, services connections) 
  

• Spacial complexity 

• Diverse detecting layer structures  

• High channel density  

• Large data volume transmitted to trigger and DAQ systems 

• New algorithms to bring together the 5D information  

• Highly granular 3D segmentation 

• Energy reconstruction 

• Precise timing
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Discrimination against pileup energy deposits 
with 90 ps timing window selection

Key challenges

• Complex engineering (mechanics, services connections) 

• Spacial complexity 

• Diverse detecting layer structures  

• High channel density  

• Large data volume transmitted to trigger and DAQ systems 

• New algorithms to bring together the 5D information  

• Highly granular 3D segmentation 

• Energy reconstruction 

• Precise timing
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• Hexagon-shaped modules tiling the electromagnetic calorimeter and partially 
the hadronic section, with hexagonal sensor shape 

• Maximised sensor area on wafer, partial sensors at borders 

• High Density (HD) sensors: 0.6 cm2 cells; Low Density (LD) sensors: 1.2 cm2 cells

Silicon modules
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Hexaboard 

" Readout of sensor cells with HGCROC custom 

ASICs and connection to motherboard for data 

transfer


" Bias supply voltage 


Silicon sensor 

" 8-inch wafers


• Planar, DC-coupled, p-type sensors 

Kapton sheet 

" Isolation to baseplate 


" Bias supply to sensor back side


CuW baseplate 

" Contributes to absorber material


~
2
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m

120 ¿m

200 ¿m

300 ¿m

THICKNESS:

DENSITY:

HD LD
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Scintillating tile modules

• Scintillator tiles sizes ranging from 4 to 30 cm2 based on radial position 

• Silicon Photo-Multipliers size of 9 mm2
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Tileboard  

" Readout of SiPMs with HGCROC 

custom ASICs and connection to 

motherboard for data transfer


Scintillator tiles 

" Wrapped in reflective foil


Silicon Photo-Multiplier 

" Placed within a dome to maximise light 

collection


" LED injection for calibration


~
2
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m
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Silicon Scintillator tiles



C. Amendola (CERN) iWoRiD 2024 July 1st, 2024

• Modules mounted in 30º or 60º wide copper plates 
slices 

• In the electromagnetic section, cassettes are equipped 
with modules on both sides 

• “Minimal” variations in the active and expensive 
elements 

• Complexity transferred to lower cost elements such as 
wagons (over 50 variants)

Modules integration
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Readout ASICs: HGCROC
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• Radiation-hard front end chip receiving and 
digitizing signals from the sensors 

• One readout chip design for silicon and tile 
modules, with minor adaptations 

• Provides 3 measurements  

• charge (ADC) with 0.2fC – 10pC dynamic range  

• preamplifier saturation time (TOT) with 200 ns 
dynamic range  

•    Time of arrival (TOA) with 25ps resolution 

• Two data flows over 1.28 Gb/s links:  

• 2x DAQ path (ADC, TOT, TOA) 

• 4x Trigger path (sum of 4 (9) channels, 
linearization, compression to 7-bit)
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Readout chain

• ECON mezzanines: concentrator chips for DAQ (750 kHz) and trigger (40 MHz) data transmission 

• Rafael: fanout chip for clock and fast control distribution 

• lpGBT: fast, radiation-hard link chips paired to VTRx+ transceivers, transmitting data and distributing clock, slow 
control and fast control signals 

• Back-end ATCA-based system, which receives and buffers data and distributes clock, slow control, and fast control 
signals, interfacing with the CMS DAQ and Timing  Hub (DTH)
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Silicon system test
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Large scale setup at 2018 test beam 

• 94 modules in 28 (electromagnetic 
section) + 12 (hadronic section) layers  

• HGCROC prototype electronics 

End-to-end readout at 2023 test beam 

• Final-like electronics 

• 2 single-modules 
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2018 test beam setup

Carried out at the H2 beamline branching from SPS (Super Proton Synchrotron, CERN) 

• e±, Ã, ¿ beam of 20 to 300 GeV energy 

• Full GEANT4 simulation  

• Used for GEANT4 regular physics validation [docs]
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• Electromagnetic section (HGCAL-EE) 

• Stack of 28 silicon modules 

• Pb/Cu absorber (+ CuW baseplates) 

• Double sided cassettes 

• Hadronic section (HGCAL-FH)  

• 12 layers of up to 7 silicon modules 
assemblies  

• Steel absorber (+ Cu cooling/support 
plates)  

• Single sided cassettes 

• Complemented by CALICE AHCAL 

• 39 layers of scintillator/SiPM-on-tile 
prototype 

• Steel absorber

~ 37 cm

https://geant4.web.cern.ch/docs/advanced_examples_doc/example_HGCal
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• e+ beam data, reconstructed in HGCAL-EE 

2018 test beam results: electromagnetic performance
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Linearity

• Energy response linear within ±1.5% above 50 GeV • Energy resolution within the physics performance target: 
0.6 % constant term   

• Compatible with performance of the current CMS 
electromagnetic calorimeter

Energy resolution

JINST 17 P05022 

https://iopscience.iop.org/article/10.1088/1748-0221/17/05/P05022
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• Ã beam data, reconstructed in HGCAL-EE, HGCAL-FH and CALICE AHCAL 

• GNN-based reconstruction (DRN) to fully exploit the high-granularity and account for hadronic showers fluctuations 

2018 test beam results: hadronic performance

17

Linearity

• Energy response linear within few % • Excellent data/simulation agreement 

• DRN method brings a x2 improvement of the resolution 
w.r.t. energy-dependent weighted reconstruction (WS)

Energy resolution

arxiv:2406.11937

https://arxiv.org/abs/2406.11937
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2018 test beam results: timing performance
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JINST 19 P04015 

• e+ beam data, reconstructed in HGCAL-EE 

Resolution using half-showers in even/odd layers 

scaled by :2 as estimate of the performance with 
all layers 

The evolution of real 
particle showers is 
resolved by the timing 
measurement 

Performance meeting target: 16 ps constant term

https://iopscience.iop.org/article/10.1088/1748-0221/19/04/P04015
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• First test beam with full vertical readout chain in place  

•  Trigger and DAQ path read out at ~100 kHz 

• Synchronisation of all FE ASICs and BE FPGAs achieved 

• DQM using reconstruction in CMS central software 

• ECON-T and ECON-D configuration tests 

• Different trigger primitive algorithms exercised 

• Zero suppression data-taking mode 

• Pass through mode

19

2023 test beam: readout chain commissioning

DTH

Serenity ATCA-based board

DAQ PC

CMS work in progress
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Reconstructed hits

Layer-clusters (2D)

Tracksters (3D)

Particles (5D)

CLUE - clustering through energy density 

• Reduce by 10x the dimensionality and remove noise 

• Fast operations (300 events/s) on parallel GPUs

CLUE 3D 

• Re-cluster with longitudinal dimension 

• Over 200 events/s on parallel GPUs

Particle flow 

• Geometrical linking of layer-clusters with timing and energy 
compatibility 

• Build showers/particles and assign properties and probabilities

Reconstruction with the Iterative Clustering (TICL) framework 
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CLUE and CLUE 3D performance with test beam data
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CMS-DP-2023-092 

• 2018 test beam campaign data:  

• 28 single-module layers HGCAL-EE 
section 

• 20 to 300 GeV e+ beam 

• Full GEANT setup simulation

be
am

11

Caption : The layer with the maximum energy is 
computed for each event. Then the average is 
taken over all events at a given beam energy. 
Despite the precise modelling of the entire beam 
line, a residual diûerence between data and 
simulation may appear due to mismodelling of 
material in front of the detector.

Longitudinal proûle : layer with maximum energy
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Energy resolution : results

Caption : Distribution of Ã/¿ is shown for 
data (solid lines) and simulation (dashed 
lines).

Caption : Energy resolution results. Stochastic and 
constant terms were ûtted, with their uncertainties 
computed from linear propagation from the 
Gaussian ûts, including correlations. Numbers in 
parenthesis represent the uncertainty on the last 
corresponding digits of the result.  The results for 
reconstructed hits are compatible with the ones 
published in [1].

Longitudinal profile Clustered energy

• Data/MC agreement within 1% 
over 50 GeV 

Excellent performance on data and simulation

• Tracksters energy 
resolution compatible 
with that of 
reconstructed hits

7

Fraction of clustered energy
Caption : The reconstructed energy was 
ûtted with a truncated Gaussian function, 
separately for all reconstructed hits, all CLUE 
clusters and the largest CLUE3D trackster. 
The top panel displays the ûtted mean as a 
function of the incident positron energy, 
normalized by the ûtted value for all 
reconstructed hits. The bottom panel 
displays the ratio between the data and 
simulation curves corresponding to the same 
set of clusters.
Uncertainties are computed through linear 
propagation of the ûtted mean errors. 

• Large fraction of energy 
reconstructed into clusters

Energy resolution

https://cds.cern.ch/record/2883615?ln=en
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Conclusion and outlook
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• The challenging HL-LHC conditions call for a complete change of paradigm  

• The HGCAL will provide excellent 5D performance  

• Novel reconstruction algorithms are fast and robust  

• System integration and validation is proceeding at full speed 

• Upcoming 2024 test beam: tests in magnetic field, further testing of the readout chain 

• Scaling up: mass production of cassettes and modules in 2025
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GNN-based reconstruction (DRN) with full HGCAL
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HGCAL beam test

SimulationCMS 

• Estimate of the potential energy 
leakage in the test beam prototype 
w.r.t. the full HGCAL system 

• GEANT4 full geometry setup

• 10 to 40% improvement with full 
HGCAL 

• Response < 1 due to 
longitudinal and 
transverse shower 
evolution modelling

arxiv:2406.11937

https://arxiv.org/abs/2406.11937
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Scintillating tiles system test
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• Readout elements and DAQ concepts close to those of the silicon system, with minor adaptations 

• Tile and SiPM production started 

• Production phase of the tile modules starting summer 2024 

• Assembly at DESY/FNAL

Tile wrapping station (DESY) Tile module assembly (DESY) 

• Readout chain vertical tests advancing in parallel to silicon 
system test 

• Further testing at test beam campaigns at DESY


