

An overview of the CMS **High-Granularity Calorimeter**

Chiara Amendola

CERN

on behalf of the CMS Collaboration

International Workshop on Radiation Imaging Detectors July 1st, 2024

CMS: Compact Muon Solenoid

Operating at the Large Hadron Collider (LHC), CERN

- Multi-purpose experiment: Higgs sector physics, Standard Model (SM) precision measurements, searches Beyond the SM (BSM)...
- Several sub-detectors nested around the LHC collision interaction point

C. Amendola (CERN)

- Trajectory of the **charged particles** bent by the 3.8 T magnetic field
- Nature, energy and direction of the **stable** particles deduced from the combined information of all the sub-detectors
- **Higher-level objects** (jets, τ leptons, missing transverse momentum) built up from detected particles

Towards the High-Luminosity LHC (HL-LHC)

LHC operations target:

- Large center-of-mass energy to produce heavy particles (e.g. m_H ~ 125 GeV)
- Large **number of collisions** to probe rare processes (e.g. $\sigma_{gg \rightarrow HH} \sim 30$ fb)

High luminosity implies:

- Exposure of active material, readout sensors, and electronics to high radiation dose
- Large pileup, affecting the vertex and object reconstruction offline and at trigger level

C. Amendola (CERN)

iWoRiD 2024

Towards the High-Luminosity LHC (HL-LHC)

LHC operations target:

- Large center-of-mass energy to produce heavy particles (e.g. m_H ~ 125 GeV)
- Large **number of collisions** to probe rare processes (e.g. $\sigma_{gg \rightarrow HH} \sim 30$ fb)

High luminosity implies:

- Exposure of active material, readout sensors, and electronics to high radiation dose
- Large pileup, affecting the vertex and object reconstruction offline and at trigger level

C. Amendola (CERN)

Pileup 140-200 at HL-LHC (over 2x w.r.t. LHC busiest interactions)

The CMS subsystems will be upgraded to cope with the harsher radiation environment

iWoRiD 2024

LHC Run 2 Run 3 Run 1 LS1 **EYETS** LS2 13.6 TeV 13 TeV **Diodes Consolidation** splice consolidatio LIU Installation cryolimit 8 TeV button collimators interaction 7 TeV Civil Eng. P1-P5 pilot beam regions **R2E** project 2020 2014 2016 2017 2018 2019 2021 2022 2015 2023 **ATLAS - CMS** upgrade phase 1 experiment beam pipes 2 x nominal Lumi 2 x nominal Lumi **ALICE - LHCb** nominal Lumi upgrade 75% nominal Lumi 30 fb⁻¹ 190 fb⁻¹

A new forward calorimeter

- Existing endcap electromagnetic calorimeter (PbWO₄) and hadronic calorimeter (plastic scintillator) designed for 500 fb⁻¹ integrated luminosity
- To be replaced by a novel **radiation-hard calorimeter**, which must withstand:
 - Fluence up to ~ $10^{16} n_{eq}/cm^2$
 - Absorbed dose up to 2 MGy

Physics performance needs:

- High 3D spacial granularity and geometric acceptance on **forward** physics
- **Precision timing** (sub-nanosecond) to contribute to the improvement of vertex resolution

C. Amendola (CERN)

The High-Granularity Calorimeter (HGCAL) project

New silicon imaging electromagnetic calorimeter + Si and Si+Scintillator layers hadronic section

- Silicon sensors operate adequately up to ~ 1.5 x 10¹⁶ n_{eq}/cm²
 - Variable thickness 120/200/300 μm to minimise radiation-induced noise
- **Plastic scintillator tiles** (SiPM readout) in the area with fluence < 4 x 10^{13} n_{eq}/cm²
- Operational temperature of -35°C

Unprecedented transverse and longitudinal readout segmentation:

- 6M silicon pads of size 0.6 or 1.2 cm² (620 m² overall)
- 240k plastic scintillator tiles 4 to 30 cm² (370 m² overall)

C. Amendola (CERN)

~2.2 [m]

iWoRiD 2024

Key challenges

- Complex engineering (mechanics, services connections)
- Spacial complexity
 - Diverse detecting layer structures
- High channel density
 - Large data volume transmitted to trigger and DAQ systems

- New algorithms to bring together the **5D information**
 - Highly granular 3D segmentation
 - Energy reconstruction
 - Precise timing

C. Amendola (CERN)

iWoRiD 2024

Key challenges

- Complex engineering (mechanics, services connections)
- Spacial complexity
 - Diverse detecting layer structures
- High channel density
 - Large data volume transmitted to trigger and DAQ systems

- New algorithms to bring together the **5D information**
 - Highly granular 3D segmentation
 - Energy reconstruction
 - Precise timing

C. Amendola (CERN)

Discrimination against pileup energy deposits with 90 ps timing window selection

July 1st, 2024

Silicon modules

- Hexagon-shaped modules tiling the electromagnetic calorimeter and partially the hadronic section, with hexagonal sensor shape
 - Maximised sensor area on wafer, partial sensors at borders
- High Density (HD) sensors: 0.6 cm² cells; Low Density (LD) sensors: 1.2 cm² cells

Hexaboard

- Readout of sensor cells with HGCROC custom ASICs and connection to motherboard for data transfer
- Bias supply voltage

Silicon sensor

- 8-inch wafers
- Planar, DC-coupled, p-type sensors

Kapton sheet

- Isolation to baseplate
- Bias supply to sensor back side

CuW baseplate

Contributes to absorber material

C. Amendola (CERN)

DENSITY:

LD

HD

THICKNESS:

July 1st, 2024

Scintillating tile modules

- Scintillator tiles sizes ranging from 4 to 30 cm² based on radial position
- Silicon Photo-Multipliers size of 9 mm²

Tileboard

 Readout of SiPMs with HGCROC custom ASICs and connection to motherboard for data transfer

Scintillator tiles

• Wrapped in reflective foil

Silicon Photo-Multiplier

- Placed within a dome to maximise light collection
- LED injection for calibration

C. Amendola (CERN)

iWoRiD 2024

Modules integration

C. Amendola (CERN)

- Modules mounted in 30° or 60° wide copper plates slices
- In the electromagnetic section, cassettes are equipped with modules on both sides
- "Minimal" variations in the active and expensive elements

Complexity transferred to lower cost elements such as wagons (over 50 variants)

11

Readout ASICs: HGCROC

- Radiation-hard front end chip receiving and digitizing signals from the sensors
 - One readout chip design for silicon and tile modules, with minor adaptations
- Provides 3 measurements
 - charge (ADC) with 0.2fC 10pC dynamic range
 - preamplifier saturation time (**TOT**) with 200 ns dynamic range
 - Time of arrival **(TOA)** with 25ps resolution
- Two data flows over 1.28 Gb/s links:
 - 2x DAQ path (ADC, TOT, TOA)
 - 4x Trigger path (sum of 4 (9) channels, linearization, compression to 7-bit)

DAQ path

C. Amendola (CERN)

iWoRiD 2024

Readout chain

- **ECON mezzanines**: concentrator chips for DAQ (750 kHz) and trigger (40 MHz) data transmission
- **Rafael: fanout chip** for clock and fast control distribution
- **IpGBT**: fast, radiation-hard **link chips paired to VTRx+ transceivers**, transmitting data and distributing clock, slow control and fast control signals
- Back-end ATCA-based system, which receives and buffers data and distributes clock, slow control, and fast control signals, interfacing with the CMS DAQ and Timing Hub (DTH)

C. Amendola (CERN)

iWoRiD 2024

Silicon system test

C. Amendola (CERN)

iWoRiD 2024

2018 test beam setup

Carried out at the H2 beamline branching from SPS (Super Proton Synchrotron, CERN)

- e^{\pm} , π , μ beam of 20 to 300 GeV energy
- Full GEANT4 simulation
 - Used for GEANT4 regular physics validation [docs]

- Electromagnetic section (HGCAL-EE)
 - Stack of 28 silicon modules
 - Pb/Cu absorber (+ CuW baseplates)
 - Double sided cassettes
- Hadronic section (HGCAL-FH)
 - 12 layers of up to 7 silicon modules assemblies
 - Steel absorber (+ Cu cooling/support plates)
 - Single sided cassettes
- Complemented by CALICE AHCAL
 - 39 layers of scintillator/SiPM-on-tile prototype
 - Steel absorber

July 1st, 2024

2018 test beam results: electromagnetic performance

e⁺ beam data, reconstructed in HGCAL-EE

Energy response linear within ±1.5% above 50 GeV

C. Amendola (CERN)

- Energy resolution within the physics performance target: 0.6 % constant term
 - Compatible with performance of the current CMS electromagnetic calorimeter

iWoRiD 2024

2018 test beam results: hadronic performance

- π beam data, reconstructed in HGCAL-EE, HGCAL-FH and CALICE AHCAL

Energy response linear within few %

C. Amendola (CERN)

GNN-based reconstruction (DRN) to fully exploit the high-granularity and account for hadronic showers fluctuations

- Excellent data/simulation agreement
- DRN method brings a **x2 improvement** of the resolution w.r.t. energy-dependent weighted reconstruction (WS)

iWoRiD 2024

July 1st, 2024

17

2018 test beam results: timing performance

e⁺ beam data, reconstructed in HGCAL-EE

250 GeV/c e⁺

The evolution of real particle showers is resolved by the timing measurement

Resolution using half-showers in even/odd layers scaled by $\sqrt{2}$ as estimate of the performance with all layers

Performance meeting target: 16 ps constant term

iWoRiD 2024

2023 test beam: readout chain commissioning

- First test beam with full vertical readout chain in place
- Trigger and DAQ path read out at ~100 kHz
- Synchronisation of all FE ASICs and BE FPGAs achieved
- DQM using reconstruction in CMS central software
- ECON-T and ECON-D configuration tests
 - Different trigger primitive algorithms exercised
 - Zero suppression data-taking mode
 - Pass through mode

C. Amendola (CERN)

iWoRiD 2024

Reconstruction with the Iterative Clustering (TICL) framework

C. Amendola (CERN)

CLUE - clustering through energy density

- Reduce by 10x the dimensionality and remove noise
- Fast operations (300 events/s) on parallel GPUs

CLUE 3D

- Re-cluster with longitudinal dimension
- Over 200 events/s on parallel GPUs

Particle flow

- Geometrical linking of layer-clusters with timing and energy compatibility
- Build showers/particles and assign properties and probabilities

CLUE and CLUE 3D performance with test beam data

Longitudinal profile

- 2018 test beam campaign data:
 - 28 single-module layers HGCAL-EE section
 - 20 to 300 GeV e⁺ beam
- Full GEANT setup simulation

over 50 GeV

C. Amendola (CERN)

Clustered energy

CMS *Preliminary* e⁺ Test Beam resolution (%) Reconstructed hits Main CLUE3D trackstei

100

50

3.0

Energy resolution

150

200

Excellent performance on data and simulation

reconstructed into clusters

iWoRiD 2024

Conclusion and outlook

- The challenging HL-LHC conditions call for a **complete change of paradigm**
- The HGCAL will provide excellent 5D performance
 - Novel reconstruction algorithms are fast and robust
- System integration and validation is proceeding at full speed
 - Upcoming 2024 test beam: tests in magnetic field, further testing of the readout chain
 - Scaling up: mass production of cassettes and modules in 2025

BACKUP

GNN-based reconstruction (DRN) with full HGCAL

- Estimate of the potential energy leakage in the test beam prototype w.r.t. the full HGCAL system
 - GEANT4 full geometry setup

C. Amendola (CERN)

arxiv:2406.11937

July 1st, 2024

transverse shower

evolution modelling

Scintillating tiles system test

- Readout elements and DAQ concepts close to those of the silicon system, with minor adaptations
- Tile and SiPM production started
- Production phase of the tile modules starting summer 2024
 - Assembly at DESY/FNAL

C. Amendola (CERN)

Tile wrapping station (DESY) Tile module assembly (DESY)

- Readout chain vertical tests advancing in parallel to silicon system test
 - Further testing at test beam campaigns at DESY

iWoRiD 2024

