

# Laboratory and beam-test performance study of 55 µm pitch iLGAD sensors bonded to Timepix3 readout chips

Peter Švihra<sup>1</sup>

D. Maneuski<sup>2</sup>, D. Dannheim<sup>1</sup>, E. Buschmann<sup>1,3</sup>, J. Braach<sup>1</sup>, R. Bates<sup>2</sup>, Y. Otarid<sup>1</sup>

1: CERN, CH 2: University of Glasgow, UK 3: BNL, USA

## Low Gain Avalanche Detectors (LGADs)

Semiconductor detectors with intrinsic charge multiplication

- Improved Signal-to-Noise Ratio •
- high electric field due to highly-doped gain layer Excellent timing capabilities (< 30 ps) for thin LGADs (~ 50  $\mu$ m) •
- Low energy X-rays detection (< 5 keV) •
- Challenging performance uniformity with small pixels •





Cathode

Anode

Γ×

p++

ш

# **Sensor bonded to Timepix3 ASIC**



- Production of iLGAD sensors
  - Produced at Micron Semiconductor
  - Double sided -> backside sensitive to scratches
  - Needs to be fully depleted
  - Designed multiplication factor ~5
  - Produced as **300 µm thick**
- Timepix3 readout chip
  - Developed by the Medipix collaboration
  - 256x256 pixels
  - 55 µm pitch
  - 1.5625 ns time binning
  - Device ID W0068\_I11





#### Sensor layout

#### no-gain border





# Laboratory tests – preparation

- Per-pixel electronic calibration
  - Automatic equalisation based on noise
  - Done only for operational threshold 1000 DAC
- Operating point establishment



#### per-pixel energy calibration





#### Laboratory tests – X-ray setup **iLGAD** bonded to TPX3 X-Ray biased to 200V fluorescence broadband X-rays X-ray tube, copper target changeable target for XRF





no-gain border

#### gain 250 x 250 pixels

3380 16.32

9.399



20

30

not resolved Ti peak (from the tube)

10

![](_page_5_Picture_4.jpeg)

30.06. - 04.07. 2024

50

60

70 pixel charge [ToT]

well resolved Ti peak

using multiplication

![](_page_6_Figure_0.jpeg)

# Laboratory tests – X-ray calibration per pixel

![](_page_6_Picture_2.jpeg)

30.06. - 04.07. 2024

no-gain border

gain

![](_page_7_Picture_0.jpeg)

### Laboratory tests – calibration results

![](_page_7_Figure_2.jpeg)

![](_page_7_Picture_3.jpeg)

![](_page_8_Picture_0.jpeg)

![](_page_8_Picture_1.jpeg)

# SPS beam test – CLICdp Timepix3 telescope setup

![](_page_9_Figure_1.jpeg)

![](_page_9_Picture_2.jpeg)

#### SPS beam test – resolutions (300 V, threshold 983 e-)

![](_page_10_Figure_1.jpeg)

![](_page_10_Picture_2.jpeg)

![](_page_11_Figure_0.jpeg)

### **SPS** beam test – voltage-threshold scans

![](_page_11_Picture_2.jpeg)

#### 25th iWoRiD - Peter Švihra (peter.svihra@cern.ch)

no-gain border

gain

#### SPS beam test – results (voltage dependency)

![](_page_12_Figure_1.jpeg)

![](_page_12_Picture_2.jpeg)

no-gain border

gain

### SPS beam test – results (voltage dependency)

![](_page_13_Figure_1.jpeg)

![](_page_13_Picture_2.jpeg)

no-gain border

gain

front view:

250 x 250 pixels

#### **SPS beam test – angular scans**

![](_page_14_Figure_2.jpeg)

![](_page_14_Picture_3.jpeg)

### Conclusions

- Design matched gain of ~5
  - Both from XRF as well as beam tests
- Timing performance limited by readout ASIC
- Angular scans match charge collection and cluster sizes
- Demonstrated 55 um pixel uniform iLGAD device with excellent efficiency

![](_page_15_Figure_6.jpeg)

![](_page_15_Picture_7.jpeg)

![](_page_15_Picture_8.jpeg)

![](_page_16_Picture_0.jpeg)

home.cern

### **Equalisation**

Equalised to the noise edge 

![](_page_17_Figure_2.jpeg)

![](_page_17_Figure_3.jpeg)

![](_page_17_Picture_4.jpeg)

#### 25th iWoRiD - Peter Švihra (peter.svihra@cern.ch)

- 7

- 5

4 was

15 [DAC]

# **TP calibration at 1000DAC**

![](_page_18_Figure_1.jpeg)

250

![](_page_18_Picture_2.jpeg)

#### 25th iWoRiD - Peter Švihra (peter.svihra@cern.ch)

A = 0.0033 ToT/e-, rms = 0.0003 ToT/e-

3.75

3.50

3.25

3.00 E

2.75

2.50

2.25

1500

1400

1300

1200

1100

1000

900

b = 2.9530 ToT, rms = 0.4259 ToT

250

0.0038

# **TP calibration at 600DAC**

![](_page_19_Figure_1.jpeg)

![](_page_19_Figure_2.jpeg)

![](_page_19_Picture_3.jpeg)

#### 25th iWoRiD - Peter Švihra (peter.svihra@cern.ch)

# iLGAD implant masks

![](_page_20_Figure_1.jpeg)

![](_page_20_Picture_2.jpeg)

![](_page_21_Picture_0.jpeg)

| Element      | Κα1                  | Κα2       | Κβ1      | Lα1     | Lα2     | Lβ1     | Lβ2     | Lγ1          |
|--------------|----------------------|-----------|----------|---------|---------|---------|---------|--------------|
| 22 <b>Ti</b> | 4510,84              | 4504,86   | 4931,81  | 452,20  | 452,20  | 458,40  |         |              |
| 26 <b>Fe</b> | 6403,84              | 6390,84   | 7057,98  | 705,00  | 705,00  | 718,50  |         |              |
| 29 <b>Cu</b> | 8047,78              | 8 8027,83 | 8905,29  | 929,70  | 929,70  | 949,80  |         |              |
| 42 <b>Mo</b> | 17479,34             | 17374,3   | 19608,30 | 2293,16 | 2289,85 | 2394,81 | 2518,30 | 2623,50      |
| 47 <b>Ag</b> | 22162,92             | 21990,3   | 24942,40 | 2984,31 | 2978,21 | 3150,94 | 3347,81 | 3519,59      |
| 50 <b>Sn</b> | 25271,30             | 25044,0   | 28486,00 | 3443,98 | 3435,42 | 3662,80 | 3904,86 | 4131,12      |
|              | https://xdb.lbl.gov/ |           |          |         |         |         |         | kdb.lbl.gov/ |

![](_page_21_Picture_2.jpeg)

#### **SPS** beam test – results (threshold dependency)

![](_page_22_Figure_1.jpeg)

![](_page_22_Picture_2.jpeg)

no-gain border

gain 250 x 250

pixels

![](_page_23_Figure_0.jpeg)

#### **Beam telescope details**

![](_page_23_Figure_2.jpeg)

![](_page_23_Picture_3.jpeg)

25th iWoRiD - Peter Švihra (peter.svihra@cern.ch)

. ÉRN

R&D

# In-pixel plots (300 V, 983 e-, all gain pixels)

![](_page_24_Figure_1.jpeg)

![](_page_24_Picture_2.jpeg)

# **Comparison of timewalk effect for gain vs nogain**

W0068\_I11 pixel - seed pixel timestamp (all pixels w/o seed)

W0068\_I11 pixel - seed pixel timestamp (all pixels w/o seed)

![](_page_25_Figure_3.jpeg)

![](_page_25_Picture_4.jpeg)