

A Silicon Drift Detector to Search for Sterile Neutrinos at the KATRIN Experiment

Korbinian Urban Technical University of Munich

KATRIN collaboration

iWoRiD 2024 - Lisbon

TRISTAN detector

Content

Introduction: KATRIN experiment

• Karlsruhe Tritium Neutrino (KATRIN) experiment around 120 collaborators around the world 1e-12 goal: measure the neutrino mass m_v = 0.0 eV probability density (eV⁻¹) -- $m_v = 0.5 eV$ m_v = 1.0 eV \rightarrow ³He + e^- + $\overline{\nu_e}$ ЗH 0 -2 0 -1 E-18575eV (eV) ' counting detector e- 77777 β-spectroscopy with MAC-E filter gaseous tritium, 10^{11 bq}

latest result:	
$m_{ m v} < 0.45~{ m eV/c^2}$	
(90% C.L.)	

Aker et. al. (2024) https://doi.org/10.48550/arXiv.2406.13516

Future: keV sterile neutrino search with KATRIN

sterile neutrino motivated by:

- right handed neutrino
- keV-mass: dark matter candidate

signature: kink in tritium β-decay spectrum

> What do we need to search for this kink with KATRIN?

- precise spectral shape measurement (FWHM <300 eV) across entire energy range
- ability to handle **high rates** at the detector (~10⁸ cps)

TRISTAN detector for KATRIN

TRISTAN detector design

Silicon Drift Detector (SDD) chip

- SDD: PIN diode with point-like anode
 - low anode capacitance
 - ➢ low noise
- hexagonal pixels with 3 mm diameter
- 166 pixels on monolithic chip (38x40 mm)
- JFET integrated in anode

SDD design and production by

MAX PLANCK

TRISTAN detector readout

Detector glueing and assembly

Detector characterization

Why is the detector characterization so important?

detector effects:

- backscattering
- charge sharing
- pileup
- entrance window effect
- crosstalk

• ...

 sensitivity will be limited by systematic effects
 precise understanding of **detector response** is crucial for sterile neutrino search

X-ray performance

excellent mean energy resolution: **144 eV FWHM**

at 5.9 keV at 2 µs trapezoidal peaking time at -30°C corresponding to ENC = $10 e_{rms}$

D. Siegmann et. al. (2024) https://doi.org/10.1088/1361-6471/ad4bf8

Setup for electron characterization

features:

- heat emission from hot tantalum wire
- magnetic steering coils
- rates from 1 cps to 100 kcps
- low light emission

Urban et. al. (2024) https://doi.org/10.1088/1748-0221/19/06/P06004

25 µm tantalum filament

rate (a.u.)

Electron response

Pulsed light characterization

- induce charge cloud at defined time and defined location in detector volume
- inspired by scanning Transient Current Technique (TCT)

detector

TRISTAN detector | Korbinian Urban

Pulsed light characterization

r (µm)

Crosstalk in front-end electronics

- origin: capacitive couplings in CSA
 → differential distortions on %-level
- ✓ crosstalk on SDD chip reduced by factor ~3 by design improvements
 ✓ crosstalk simulation to estimate impact on spectroscopy

Many more characterizations

risetime measurement

Outlook

end 2024:

- 3 modules in replica of KATRIN detector section
- first tests of final DAQ system

2025:

• 9 modules in replica of KATRIN detector section

2026:

- installation in KATRIN beamline
- start of sterile neutrino physics program (~1 year)

TRISTAN detector | Korbinian Urban

Backup

Other applications of TRISTAN SDD technology

option as detector for IAXO (dark matter search)

low background and clean materials are key

detector for ComPol cubesat mission

goal: measure polarisation of X-rays from Cygnus X-1

Crosstalk layout modifications

+ increased SiO₂ thickness

Crosstalk couplings

Different shapes of crosstalk

 remaining outliers fit to Z-ray connector

0107

0111

27

0911

Electronics noise

three dominating effects:

- thermal noise in front-end JFET
 - series noise, white noise independent of f
- 1/f noise in front-end JFET
 - pink noise, power scales with 1/f
- electron statistics in leakage current
 - parallel noise, power scales with 1/f²

2eI

Noise curves

KATRIN keV sensitivity limit

Laser measurement

• fit of detector output waveform with four parameters: offset, amplitude, exp. rise time, gaussian width

Electron gun

