

100µPET An ultra-high-resolution silicon-pixel-based PET scanner

Swiss National Science Foundation

UNIVERSITÉ DE GENÈVE

UNI LU

25th iWoRiD 3rd July 2024

Mateus Vicente (UNIGE) on behalf of the 100µPET collaborators

Introduction

Positron Emission Tomography (PET)

PET

SUV

MRI

- PET is a nuclear medicine method to study met
 - Is it the time for a change of paradigm? A radiotracer is injected in the body; Regions with abnormal metabolism will present an excess of radiotracer; The radiotracer emits <u>positrons</u>, which "walks around" with annihilating with a positron of the near by the solution in order to back the positrons from the annihilation are detected in <u>coincidence</u>; Lines-of-Response (LoR) are defined by the volubly lox ploitings much improved apatial poland time resolutions LoRs are processed to generate density maps of the detected annihilations;
 - Due to the lack of spatial resolution, PET imaging must be done in hybrid mode (combining MRI or CT measurements)

Image from here

Didier Ferrere

latous Vicon

- · System integr
- Laboratory tes

mvicente@cern.ch

Introduction

Sensor granularity: 320 mm³

PET with the 100µPET scanner

- Current PET scanner technology employs arrays of scintillating crystals with typical size $\geq 1 \text{ mm}^3$
 - Small blood vessels can only be visualized in their entirety (A).
- To access ultra-high resolution molecular imaging, one must reduce the LoR volumes by exploiting:
 - Better timing resolution for coincidence measurement (TOF-PET), or increased detection volume granularity
- The 100µPET SNSF Synergia project: UNIGE (scanner production) EPFL (imaging reconstruction) and UNILU (medice
 - <u>Ultra-high resolution</u> imaging by employing <u>multi-layer stacks of monolithic pixel detectors</u>, allowing the study of changes in small blood vessels, as atherosclerotic plagues (B)

Images: © Xavier Ravinet - UNIGE

Pixel pitch: 150 µm | DOI: 550 µm Sensor granularity: 0.012 mm³

100uPET stack

24 mm

 \mathbf{V}

- System simula Laboratory test
 - **Didier Ferrere**
- · System integr
 - Laboratory tes

Pierpaolo Val Lead chip des

Digital electro

icci - CIBM Breakfast and S

The 100µPET team

and other collaborators

The 100µPET scanner

ASIC, module/layer, tower

Multi-layer stack of CMOS imaging sensors

- 100µPET MAPS: 130 nm SiGe BiCMOS; 2.3 x 3 cm²; 150 µm pixel pitch; 270 µm thick; 4 kOhm*cm p-substrate;
 - Designed foreseeing flip-chip bonding, the size and pitch of the bonding pads allows integration with standard PCB/FPC
- Single silicon detection layer composed by 2x2 ASICs flip-chip to a flex printed circuit, covering 24 cm²
 - In addition to the thin MAPS, a 50 µm thick layer of Bismuth is added above the MAPS to increase the photon convertion
- 60 detection layers + cooling block compose each scanner tower, with 4 towers per scanner (for a grand total of 96

mvicente@cern.ch

Mateus Vicen System integr Laboratory tes

Tower with 60 layers

Jihad Saidi 🔁 n System simula

Laboratory test

Didier Ferrere

 System integr 2. Laboratory tes

> o Paol desigr electro

blo Val hip des electro

ist and S

mvicente@cern.ch

39

100µPET scanner with

central e⁺ source

Monte Carlo simulations

- Performance simulations with (Geant4 + AllPix²)
 - Scanner geometry (silicon chips, flex, cooling block) + <u>scatter water volume</u>
 - positron spectrum (positron range and photons acollinearity)
 - Photon interactions + sensor/ASIC response + pixel clustering
 - No time information (event based) and <u>no energy window</u> used
 - LoR are crated on events with only 2 detections on 2 different towers

Monte Carlo simulations FACULTÉ DES SCIENCES Sensitivity and Point Spread Function mvicente@cern.ch **Mateus Vicen** System integr 100µPET scanner with .aboratory tes Point source simulations П central e⁺ source Sensitivity: LoR created / annihilations nad Saidi System simula 5 / 3.1% (with / without 50 µm Bismuth layer) .aboratory tes Point spread function (PSF): Filtered back projection (FBP) dier Ferrere 0.28-0.30 mm / 0.21-0.24 mm (w / wo Bi) System integr aboratory tes PSF w/ sensitivity correction FBP PSF with bismuth FBP PSF without bismuth Lorenzo Paol esigr - 1.0 0.5 -- No Bi [<u>80</u>].80 +0.5, 2.0 (RS) ectro – Bi ♦ 0.1, 2.0 - · - Bi Norm. PSF [a.u.] $\times 0.1, 0.2$ [mm] Val des FWHM 0 -0.5 :ctro > .40 and S -0.5 -.21

x [mm]

0.5

-0.5

-0.25

0

0.25

 $x \, [\rm mm]$

5

10

15

x [mm]

UNIVERSITÉ

DE GENÈVE

Derenzo and Image Quality phantoms

- Derenzo phantom: Rods diameters {0.2, 0.25, 0.3, 0.4, 0.5, 0.6} mm
 - Valey-to-peak ratio: 0.57 (0.25 mm rods), 0.25 (0.5 mm rods) (ref. scanner = 0.6)
- <u>NEMA NU4 Image Quality phantom</u>: Active rods and uniform volume + air/water volume
 - Spatial resolution + attenuation and SNR + scatter correction performance
 - <u>Recovery coefficient:</u> 0.6 (for 1 mm rod)
 - Standard dev. for the uniform volume: 4%

• System integr • Laboratory tes

______mvicente@cern.ch

Jihad Saidi tem simula

errere

Laboratory tes

Lorenzo Paol

- Sensor design
- Analog electro

Pierpaolo Val

- Lead chip des
 Digital electron
- IBM Breakfast and S

Atherosclerosis case study

- Mouse phantom from <u>Digimouse PET</u> (background) + <u>atherosclerotic plaque microCT</u> (signal of interest)
 - Injected activity: <u>30 MBq</u>
 - Measurement time: <u>20 min</u>
 - Mouse volume = 45 mL → <u>1.4 x 10⁹ background annihilations</u>
 - Plaque volume = 0.006 mL → <u>8.4 x 10⁶ plaque annihilation</u>

microCT of atherosclerotic plaque

Timing and count rate performance

Offline time-stamping of annihilation events allow us to investigate multiple jitter and time-window scenarios using the same data-set

- Time between 2 decays follows an exponential distribution
 - Cumulative distribution function method is used to get the time between 2 consecutive decays
- The assigned time-stamp is smeared with a gaussian distribution representing the ASIC's jitter
- Data loss from ASIC's buffer saturation (MAX 350 kHz cycle rate) is also included

mvicente@cern.ch

Mateus Vicen
System integr
Laboratory test

nvicente@cern.ch

Assembly and alignment study

Disclaimer: the simulation results were obtained with all <u>voxels perfectly aligned</u> (impossible in real life)

- Spatial and temporal alignment à la HEP detectors using cosmic muons, or external particle beams (as from CERN SPS or a synchrotron light source)
 - Straight muon tracks with Chi2/NDoF ~1 can be used for space/time alignment between different layers and tower
 - Many particle showers are seen. Maybe this voxel block can be used as an active target for a fixed target experiment? This is subject for another talk...

~1 day of cosmic run

Muons tracks with Chi2/NDoF ~1

Muons tracks with multip	licity 500) p el•clue	boratory tes
			izo Paol sor design og electro
	-	K	aolo Val d chip des al electro
		• . · .	• kfast and s
	20	40	

Jihad Saidi

Mateus Vicen System integr

Laboratory tes

 System simula Laboratory test

Didier Ferrere

System integr

100µPET flip-chip module

Flip-chip verification

12

- A modular and compact scanner design is achieved with ASIC/flex flip-chip assembly
 - ACF/ACP and NCP flip-chip was investigated with dedicated test assemblies with 400-500 bonding pads
 - Pad-wafer produced at CMi-EPFL: <u>525 µm</u> thick, Ti/AI metal patterning, Au stud or ENIG bumped
 - Flex to probe flip-chip bonding yield: 4 layers, <u>~180 µm</u> total thickness, ENIG pad finishing
 - Flip-chip machine for the thermocompression using an epoxy adhesive (Araldite 2011), 20 kgf bonding force and 100 °C for 7 minutes

Bonding pads

Pads and gold stud

Glue dispensing and bonding

mvicente@cern.ch

Mateus Vicen
System integr

Laboratory tes

Flip-chip qualification tests

Temperature cycles (TC) and current injection

Au studs with NCP bonding was chosen for the assembly

- 100% yield connection among hundreds of pads
- Direct) Current stress-tests to verify bonding failure
 - Limit DC to 200 mA, avoiding local heating exceeding Tg of the glue (60-80 °C)
 - Visible permanent defects (hot spots higher bonding resistance) after reaching 300 mA
- \square 100 TCs from +5 to +60 °C

13

No effect on connections

Bonded assembly and IR thermal image during DC injection

nvicente@cern.ch

Mateus Vicen
 System integr

Loboratory tes

Ferrere m integr atory tes

Lurunzo Paol

100µPET pre-production

14

- Electro + thermal + mechanical prototype under design/production
 - Test-chip with the same dimensions, electronic interface and power consumption (resistance heater)
 - Test-flex with the same dimensions, circuit stack-up and ZIF connection to MAB
- Validation of module <u>assembly</u>, layer <u>stacking</u>, <u>cooling</u> performance and back-end <u>connections</u>

100µPET module demonstrator

Design and production

□ **240x** 300 µm thick test chips:

15

- 4x 4-wire single-bond resistance, 1x resistive heater (1 µm thick Al), 2 RTDs (PT1000-ish), 1x 162-pads chain and 1x 82-pads chain
 - 4x 4-inch wafers produced at NMP-FCBG and 15x 6-inch wafers from CMi (no RTDs)
- **60x** test flex (+ 2x beck-end prototype system)

CH

RTD

HT

CH

UNIVERSITÉ

d chip des

BRkfast and S

100µPET module demonstrator

Reference module

16

- Bonding reference module with flip-chip machine
 - We are putting in place the data-base tracking, handling the temporary storage, module quality control tests and etc.

UNIVERSITÉ

mvicente@cern.ch

Mateus Vicen

System integr

Laboratory tes

100µPET module demonstrator

mvicente@cern.ch

Mateus Vicen

Reference module characterization

- Bond resistance of <u>~10 mOhm</u> and uniform over module's 4 corners and center
- □ Chains of pads indicating no open connection in ~1000 pads (**bonding yield >99.9%**)
- Heater system is working as expected, with <u>8°C</u> increase in temperature at <u>nominal module power (2W</u>)

17

Power injection on heater and thermal image

.mvicente@cern.ch

Summary and conclusions

- Potential <u>ultra-high-resolution molecular imaging</u> using MAPS
 - <u>5%</u> and <u>3.3% scanner sensitivity</u> (w/ or w/o Bismuth layer)
 - 0.21 mm FWHM PSF → 0.017 mm³ volumetric resolution
- ASIC designed within the UniGE DPNC group (ETA Sept 2024)
 - Monolithic SiGe; flip-chip bonding integration; 150 µm pixels;
 200 ps time resolution (~1ns coincidence time-window)
- <u>Flip-chip integration</u> qualified with test-chips

18

- Characterization tests indicates good yield and reliability
- Module and Tower <u>demonstrators</u> under construction
 - Module reference assembled and qualified.
- Side-task: simulations with High Z sensors
 - Lower the number of layer, scaling the assembly to larger areas
 - Interlaying Si with High Z, a single tower can be used as a Compton camera, allowing simultaneous PET and SPECT in the new scanner
 - Polarization measurement of photons allows scatter/random rejection (better SNR) using the entanglement information from the photons

