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Outline

* Boron Neutron Capture Therapy bases and dosimetry

* Comptonimaging principles

* First Monte Carlo simulations

* (Classic approach by using tomography iteratives algorithms

* Novel approach by Deep Learning (DL) models



Boron neutron capture therapy

Boron Neutron Capture Therapy (BNCT) is an innovative hadrontherapy with high selectivity
over cancer tissue based on the neutron capture reaction °B(n, a)7Li

n+ -5 1p*
1 IV administered 2 Tumor irradiated 3 Boron captures neutrons and emits alpha

targeted boron drug with safe neutrons and Li particles destroying cancer cell
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“Skwierawska, D. et. al. Clinical Viability of Boron Neutron Capture Therapy for
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Dosimetry on BNCT and project scope
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Compton imaging method

* Principle » Single stage Compton imaging or “True
cos(8) =1 —m,c? (Ei - Ei) events”
where E, = Eg + E, . ! good events don’t include multiscattering

Compton

> Compton event: the position of the source is

confined in the Compton cone and found by * Main advantages

overlapping them 3D Imaging Capability, High Sensitivity, large
" Absorber Field of View > Compact detection systems
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First simulation set-up

* Detector: CZT crystal stack (5 mm thickness each), 60
mm from the source
. Phantom material: Air, soft tissue
‘\ e Simulated sources: 5-points like and spheric 478 keV
gamma distributions

6" GEANT4

A SIMULATION TOOLKIT

source CZT detector

* Tomography FOV: cube 120 mm side centered with
source and covering the entire phantom.
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Abbene, L.; Principato, F.; Buttacavoli, A. and et al.: Potentialities of High-Resolution 3-D CZT Drift Strip Detectors for
Prompt Gamma-Ray Measurements in BNCT. Sensors, 22, 1602 (2022) ©



MLEM reconstruction method validation
On Air phantom
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* Good resolutionin x andy profiles, slightly
worse In z direction (stretching effect)
. * Noimage interference when phantom is added



Tumor-to-healthy 2D boron ratio study
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e Spheric source In more realistic
conditions

 Two different ratios: ideal case (T/N =
5) and (T/N = 2) extreme case (clinical
values are T/N>3)

e Both distributions resolute.
> More Iterations needed to solve the
Image in z (250)



[teration methods and novel approach

BACK-PROJECTION

7

-

—_—

* Limitation for online dose —
measurements: MLEM works only post-
iIrradiation, tomography takes few mins
(= 20 min) H
. o I .
- Machine. "\ oA u——
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* New approach to go from the back- I
projection image to the tomography

dose by using Deep Learning

Training Deéep  Learning

model witht back-projection First DL approach: tumor
and tomography labels sets g N monitoring by segmentation
to make tomography using Transfer Learning
reconstruction <H>

\_warning

No availability of Compton
images databases within BNCT
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Tumor Monitoring DL model

* Matlab pipe-line for segmentation

of images Resnet U-net architecture
Property Value
- Layers 206 x 1 Layer
° U S€E Of CO NVvVO lUtI Oona l N eura l- Connections 227 x 2 table
. . 12 64 64 InputNames x 1 cell 64 64
Network mOdel Wlth d ReSIdual U- | ()llipltlt-.\hllll(.‘.s i X } cell

net Architecture (ResNet), widely
used for segmentation

288x288

128 128 128 128 128
- 3
Test metrics: accuracy and 2
SenSitiVity 256 256 256 256 256
) TP
Ccuracy =
y TP _|_ FP % 512 512 512 512 512
Sensitivi P ; |
enSItIUlt — § 1024 1024
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(a)
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Model performance performance

case 1 79.56% 99.87%
case 2 4.83% 100%
case 3 19.68% 100%
case 4 3.81% 100%
Normalized back
projections
Case 1: Spheric Case 2: Spheric source Case 3 Spheric source  Case 4: 5 point-like
source in Air in Tissue (T/N=2) in Tissue (T/N=5) source in air

ResNet
segmentation
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New geometry and simulations

New geometrie to reduce z-stretching and increase
distribution database (DB) > improve 3D reconstruction and

DL performance e 4 four-layers detectors geometry (2 frontal,

2 at +60°); this was the one used for deep
learning image reconstruction in this study

Sphere in ring source (T:N=3:1) XY gamma generation heatmap
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+ noise introduction
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U-Net model variants

3

L,

® U-Netandimproved versions used for image - “' f17 T _f.s., -
d e n O i S i n g* : 128256 256 ;EE%V E,T;,_r% 512256 128
1x1 Conv == 3x3 Conv, bnorm, RelU == Skip + Concat Pooling _I—’ Unpooling
(a)

(a) classical U-Net ‘
(b) dual frame U-Net L4l = Al

128256256 | (G ——
€ PE .oer

256 512 512 1024 512 256

o4 25612864

512 1024 512

(c) tight frame U-Net with Haar filter bank

Skip Pooling Unpooling

r p
‘6‘ ‘ -
’54 320 6464
J“
'12 — 1x1 Conv
640 128 64
| 47 w=p 3x3 Conv, bnorm, Rell
N Skip + Concat
‘Wi = Skp +
J— Skip

1x1 Conv = 3x3 Conv, bnorm, RelU ==p Skip + Concat

(b)

® The inputimages are the results of the tenth
iteration (~ 4-6 min) of MLEM algorithm

® The models were impletented in 3-D variants
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Example of U-Nets predictions
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Conclusions

* [twas provedthe Compton cameraimaging approach for dose tomography within Boron

Neutron Capture Therapy
®* Byusing an iterative method (MLEM) it was possible the dose reconstruction but not

applicable in in-vivo therapy situations
* Deep Learning was used as first approach for tumor monitoring with good

accuracy/sensitivity compromise
* Byaugmenting the image data-base with simulated data, few models based on 3D U-net

were training and their performances seems to be promising (ongoing)

What’s next?
* Implementation of hybrid methods and study their performances

* Working on detector development for tests with experimental data
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