

### Characterization of charge integrating detectors with iLGAD sensors in the soft X-ray energy range

<u>M.°Carulla</u><sup>1</sup>, R.°Barten<sup>1</sup>, F.°Baruffaldi<sup>1</sup>, A.°Bergamaschi<sup>1</sup>, A.°Bisht<sup>2</sup>, M.°Boscardin<sup>2</sup>, B.°Braham<sup>1</sup>, M.°Brückner<sup>1</sup>, M.°Centis Vignali<sup>2</sup>, R.°Dinapoli<sup>1</sup>, S.°Ebner<sup>1</sup>, K.°Ferjaoui<sup>1</sup>, F.°Ficorella<sup>2</sup>, E.°Fröjdh<sup>1</sup>, D.°Greiffenberg<sup>1</sup>, O.°Hammad°Ali<sup>2</sup>, S.°Hasanaj<sup>1</sup>, J.°Heymes<sup>1</sup>, V.°Hinger<sup>1</sup>, T.°King<sup>1</sup>, P.°Kozlowski<sup>1</sup>, C.°Lopez-Cuenca<sup>1</sup>, D.°Mezza<sup>1</sup>, K.°Moustakas<sup>1</sup>, A. Mozzanica<sup>1</sup>, G.°Paternoster<sup>2</sup>, K.A. Paton<sup>1</sup>, S.°Rochin<sup>2</sup>, C.°Ruder<sup>1</sup>, B.°Schmitt<sup>1</sup>, P.°Sieberer<sup>1</sup>, D.°Thattil<sup>1</sup>, X.°Xie<sup>1</sup>, and J.°Zhang<sup>1</sup>

<sup>1</sup> Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen-PSI, Switzerland
<sup>2</sup> Fondazione Bruno Kessler, Via Sommarive 18, 38126 Povo TN, Italy

maria.carulla@psi.ch 25<sup>th</sup> iWoRID, Lisboa, July 2, 2024



### 🌒 PSI

### Outline

Hybrid pixel detectors for photon science 2D detectors for soft X-rays Challenges for soft X-rays detection **Development Strategy** QE improvement iLGADs for soft X-ray detection Depth dependence of gain in iLGADs Single photon resolution Comparison between gain layers

### **Paul Scherrer Institut**





### Hybrid pixel detectors for photon science





#### Single photon counting for synchrotons



 Counts
Fluorescence rejection

SLS 2.0





Large area (>  $4 \times 8 \text{ cm}^2$ ) tileable

Bump bonding limits pixel pitch

Sensor and readout are optimised separately

Highly parallelised readout -> High frame rate(> 2kHz)

Input capacitance increases the electronic noise

Charge integrating for XFEL

- <sup>3</sup> Large dynamic range
- High flux
- 🙁 Calibration

Single photon resolution for soft X-rays

 $\odot$ 

 $\odot$ 

 $\odot$ 

 $\odot$ 

 $(\mathbf{x})$ 

Direct conversion

Page 4

### 2D detectors for soft X-rays (200 eV to 2 keV)



L-edges of 3d transition metals • Mn, Fe, Cu, ...

RIXS & TR-RIXS V. Hinger's talk, July 4 at 12:20

**Detector requirements:** 

- $\circ~$  High QE for soft X-rays
- $\circ~$  Large area
- $\circ~$  Good spatial resolution (~ 5  $\mu m)$

○ Low noise (< 5 e- r.m.s)

o C, N, O, S, ...

High frame rate (> 100 Hz SwissFEL)

K-edges light elements and 'water window'

#### **EMCCD**

- ⊖ High QE (55% @ 250 eV)
- Eimited area (~ 2 x 2 cm<sup>2</sup>)
- $\bigcirc$  High spatial resolution ( $\leq 5 \mu m$ )
- $\bigcirc$  Low noise (≤ 1 e<sup>-</sup>)
- Slow readout (~ 1Hz)

#### Scientific CMOS

- ᠃ High QE (62% @ 250 eV)
- Eimited area (~ 2 x 2 cm<sup>2</sup>)
- $\Theta$  High spatial resolution ( $\leq$  10  $\mu$ m)
- $\odot$  Low noise (~ 1-2 e<sup>-</sup>)
- 🤥 Frame rate (< 50 Hz)

#### Hybrid pixel detectors

- 😢 Low QE (< 1 % @ 250 eV)
- □ Large area (> 4 x 8 cm<sup>2</sup>) tiled
- Spatial resolution (< 5 μm\*)</p>
- Noise (~ 35 e<sup>-</sup>)
- ↔ High frame rate(> 2kHz)

### **Challenges for soft X-ray detection**







#### Setup at the Surface/Interfaces Microscopy (SLS)

#### **Quantum efficiency**



03.07.2024 M. Carulla et al Sensors 2024, 24(3), 942; <u>https://doi.org/10.3390/s24030942</u>



#### Setup at the Surface/Interfaces Microscopy (SLS)

**Quantum efficiency** 





#### Setup at the Surface/Interfaces Microscopy (SLS)

**Quantum efficiency** 





#### Setup at the Surface/Interfaces Microscopy (SLS)

#### **Quantum efficiency**



Page 10

### iLGADs for soft X-ray detection





### iLGADs for soft X-ray detection





#### 03 07 2024

## Depth dependence of gain in iLGADs

#### QE value equal to the TEW batch

~ 60 % for 250 eV photons 0

#### Averaged gain measured for different gain-layer designs

standard, shallow and ultra-shallow gain-layer designs 0



A. Liguori et al 2023 JINST 18 P12006

https://doi.org/10.1088/1748-0221/18/12/P12006

PSI

### Depth dependence of gain in iLGADs

Monte-Carlo simulation of charge drift, diffusion and multiplication

- $\circ~$  Mönch (25  $\mu m$  pitch) with Shallow gain-layer design
- $\circ$  Photon energy 500 eV
- $\circ$  Cluster 2x2







charge cloud

- Two peaks M<sub>e</sub> and M<sub>h</sub>
- M<sub>e</sub> X-ray is absorbed after the gain layer (G )
- $\circ$  M<sub>h</sub> X-ray is absorbed before the gain layer (G)

Antonio Liguori *et al* 2023 *JINST* **18** P12006 https://doi.org/10.1088/1748-0221/18/12/P12006

### Single photon resolution

#### iLGAD measurement @ SIM (SLS):

- Photon energies: <u>390 eV to 900 eV</u>
- o Standard gain-layer design
- Temperature ↓ → Leakage current ↓Gain ↑
  Photon energy ↓ → M<sub>e</sub> counts ↓ M<sub>h</sub> counts ↑



V. Hinger et al, Front. Phys., 28 February 2024 Sec. Radiation Detectors and Imaging Volume 12 - 2024 | <u>https://doi.org/10.3389/fphy.2024.1352134</u>



- $\circ$  Single photon resolution (E > 390 eV)
- Two peaks (Me and Mh)
- Weighted SNR -> SNRh (E < 500 eV)</li>
- Requires 2x gain @ 250 eV

### **Comparison between gain layers**

#### iLGAD measurement @ SIM (SLS):

- Standard and shallow gain-layer designs (500 eV)
- Shallow design shows large # of count for M<sub>e</sub>
- Weighted SNR (shallow), gain needs to be increased by a factor of 2 (like standard)







### **Summary and Outlook**

#### **TEW development:**

- o Important: reduction of concentration and depth of n+, passivation of the surface and thinning of the passivation
- QE was improved from 1% up to 62% (80% prototype) for 250 eV photons
- o A new batch with further optimisation of the passivation is expected in October
- o Systematic study of the QE after irradiation

#### iLGAD development for soft X-rays:

- o The spectral response shows two peaks
- Single photon resolution down to 390 eV for standard and shallow design of the gain layer
- o Shallow design shows a higher probability of photon absorbed after the gain layer
- First user experience of Eiger+iLGAD to study BiFeO<sub>3</sub> thin film. Spin cycloids ->64 nm period.
- Study of the gain suppression effect. Jiaguo's poster in Session 2 (ID: 141) July 3, 14:00 15:10
- o Study of the iLGAD response at high intensities.
- Next iLGAD batch, SPC and CI + iLGAD detectors with single photon resolution (E>250 eV)



T. A. Butcher, et al. Ptychographic Nanoscale Imaging of the Magnetoelectric Coupling in Freestanding BiFeO3. Adv. Mater. 2024, 2311157. https://doi.org/10.1002/adma.202311157



### Acknowledgement



#### My thanks go to:

- Colleagues from FBK
- K.Vogelsang and C.Wild from LXN
- A. Kleibert, J. Raabe, S. Finizio and T. Butcher from the SLS.
- A. Liguori from University Bari
- Two of the authors (V. Hinger and K. A. Paton) have received funding from MSCA PSI-FELLOW-III-3i (EU grant agreement No. 884104)

#### Postdoc positions open:



#### **Photon Science Detector Group**

Back from left to right: B. Braham, K. Moustakas, C. Ruder, D. Greiffenberg, J. Heymes, K. Ferjaoui, C. Lopez-Cuenca, K. Kozlowski, M. Brückner, K. A. Paton, F. Baruffaldi, T. King, and P. Sieberer. Front: J. Zhang, V. Hinger, S. Hasanaj, A. Bergamaschi, X. Xie, R. Dinapoli, and B. Schmitt. Missing: R. Barten, S. Ebner, E. Fröjdh, D. Mezza, A. Mozzanica and D. Thattil.





# Backup

### **Development strategy**





#### TCAD simulation of the process and device



#### Internal QE larger than 90 %

J. Zhang *et al* 2022 *JINST* **17** C11011 https://doi.org/10.1088/1748-0221/17/11/C11011

### LGAD technologies



|                                   | LGAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LGAD inverse-LGAD trench-isolated AC-coupled LGAD (iLGAD) (AC-LGAD) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AC-coupled LGAD<br>(AC-LGAD)                         | deep junction LGAD<br>(DJ-LGAD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ideal LGAD   |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| cross section                     | r seguer<br>P-bulk r seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seguer<br>seg | y'inger<br>p-buk<br>ringer<br>fak                                   | r equat<br>p-bulk r equations<br>p-bulk r equations<br>p-bulk r equations<br>r | rever<br>to the readout<br>p-bulk<br>rever<br>p-bulk | deep junction (gain) layer<br>p bulk for a state of the sta | ?            |
| process*                          | standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | double-sided                                                        | stepper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | standard                                             | epi-growth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | standard     |
| complexity                        | low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | low                                                                 | medium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | high                                                 | high                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | low          |
| collected charge                  | e⁻                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $h^{\star}$                                                         | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e⁻ (bipolar)                                         | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e⁻ or h-     |
| readout                           | DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DC                                                                  | DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AC                                                   | DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DC           |
| non-gain region<br>(fill factor)  | > 40 um<br>Iow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 um<br>100%                                                        | 6-7 um<br>high                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 um<br>100%                                         | 0 um<br>100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 um<br>100% |
| gain depends on absorption depth  | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | yes                                                                 | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | no                                                   | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | no           |
| detection area                    | large                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | medium-large                                                        | small                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | medium-large                                         | medium-large                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | large        |
| multiplication of surface current | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | yes                                                                 | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | yes                                                  | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | no           |
| risk/yield                        | low/good                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | medium/medium                                                       | medium/medium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | medium/medium                                        | high/low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | low/good     |

Page 21

development @ PSI & FBK \*New developments not listed: Resistive AC-LGAD and MARTHA

### IQE and QE after irradiation



### SO saturates to 1e4 cm/s



### **Gain suppresion**



- $\circ$  ~ Red laser (660 nm), repetition rate (5 MHz), Beam  $\sigma$   $^{\sim}$  4  $\mu m$
- Observed gain suppression for front(gain layer) and back (pixel) side illumination
- o Gain suppression depends on :
  - Beam intensity and size (# e-h pairs per pulse and density)
  - Charge-carrier density at the gain layer
  - o Gain layer design and multiplication factor



### Photon science with iLGADs



#### EIGER (single-photon counting) + iLGADS @ SIM-SLS

- EIGER+ iLGAD for ptychography (User friendly
- $\circ~$  Dichroic contrast at Fe  $\rm L_3$  edge (712.5 eV) of BiFeO\_3 thin film
- Improved resolution down to 6 nm (vs. 15 nm with Mönch + standard sensor)

#### JUNGFRAU(charge integrating) + strixel iLGADS @ EuXFEL

• JUNGFRAU+ iLGAD for RIXS



Energy



First user experiment using an iLGAD sensor where spin cycloids with 64 nm period were observed

T. A. Butcher, et al. Ptychographic Nanoscale Imaging of the Magnetoelectric Coupling in Freestanding BiFeO3. Adv. Mater. 2024, 2311157. https://doi.org/10.1002/adma.202311157

### **Development strategy**



Two developments for hybrid detectors towards soft X-rays:



|                                       | commercial                      |                                |                                                   |                                    | Facility / institute driven development  |                                |                 |                                             |
|---------------------------------------|---------------------------------|--------------------------------|---------------------------------------------------|------------------------------------|------------------------------------------|--------------------------------|-----------------|---------------------------------------------|
| Parameter                             | Andor iXon Ultra<br>888 (EMCCD) | Andor Neo 5.5<br>sCMOS         | Princeton<br>Instruments<br>PIXIS 1024BR<br>(CCD) | Hamamatsu<br>ORCA-Fusion<br>(CMOS) | pnCCD<br>(PNSENSOR)                      | DSSC (EuXFEL)                  | PERCIVAL (DESY) | Hybrid X-ray<br>detector (PSI,<br>Jungfrau) |
| Quantum<br>Efficiency (QE)<br>@250 eV | 55%<br>(400 nm UV)              | 70%<br>(400 nm UV)             | < 42%<br>(400 nm UV)                              | 65%<br>(400 nm UV)                 | 80%                                      | 52%                            | 90%             | 80%                                         |
| Read Noise (e-)                       | < 1                             | 1.4                            | 4-10                                              | 1.4                                | 10.5 (hg)                                | 40-60 (miniSDD)<br>10 (DEPFET) | 16              | 3 - 5 (LGAD)                                |
| Frame Rate<br>(FPS)                   | 26                              | 30 (full frame)<br>100 (burst) | < 2                                               | < 100                              | < 100                                    | 4.5 MHz<br>(burst)             | < 120           | 2 - 10 k                                    |
| Dynamic Range<br>(e <sup>-</sup> )    | 80 k                            | 30 k                           | 100 k                                             | 15 k                               | 1.6 M                                    | 1.1 M                          | 3.5 M           | 3.44 M<br>(gain=10)                         |
| Pixel Size (µm)                       | 13 x 13                         | 6.5 x 6.5                      | 13 x 13                                           | 6.5 x 6.5                          | 75 x 75                                  | 204 x 236                      | 27 x 27         | <b>75 x 75</b><br>15 x 375                  |
| Pixels                                | 1024 x 1024                     | 2560 x 2160                    | 1024 x 1024                                       | 2304 x 2048                        | 512 x 1024                               | 128 x 256                      | 1484 x 1408     | 512 x 1024                                  |
| Sensor Area<br>(mm²)                  | 13.3 x 13.3                     | 16.6 x 14.0                    | 13.3 x 13.3                                       | 14.9 x 13.3                        | 38.4 x 76.8<br>(2 side buttable <b>)</b> | 30 x 62<br>(tiable)            | 40 x 38         | 38.4 x 76.8<br>(tilable)                    |













Page 26

### Interpolation with iLGADs



Sample prepared

by X-ray

**Optics** group

Transmission image unfocused beam

Moench

250 500 750 1000 [um]



Page 27

\* Important for RIXS experiments at SwissFEL and SLS-2.0

Photons [#] 10<sup>1</sup>

10<sup>2</sup>

### Impact ionization





#### Pure electron started impact ionization

2926)

O. Triebl, "Reliability Issues in High-Voltage Semiconductor Devices"

