Timing Characterization of 1 cm² LGAD pads for Space Experiments

Ashish Bisht, M. Boscardin, L. Cavazzini, M. Centis Vignali O. Hammad Ali, F. Ficorella, G. Paternoster

July 2, 2024 25th International Workshop On Radiation Imaging Detectors(iWoRiD)

Time resolving tracking in space experiments

- Fiming \sim 50-100 ps
- Identification of back-scattered hits from calorimeters
- ► Time-of-flight (ToF) measurement → typically done using scintillators
- Improved e/p identification

Matteo Duranti et al. Instruments 5.2 (2021) @

abisht@fbk.eu

Timing: 1 \mbox{cm}^2 LGADs for Space Application

July 2, 2024 1 / 15

Space experiment requirements

- \blacktriangleright Large area to cover $ightarrow \mathcal{O}(m^2)$
- ► Power constraint → Reduce N_{channels}
- Small particle flux \rightarrow Large channel size
- "Typical" Silicon sensor for space
 - \rightarrow Strips (100 μm pitch)
 - \rightarrow 60-100 cm long
 - $ightarrow \sim 1 \ {
 m cm}^2$
- LGAD: suitable for timing
- ► LGAD channel size for HEP \sim 1-2 mm² $\rightarrow \sigma_t \approx$ 30 ps for Min. Ioniz. Particle (MIP)

Scaling LGAD channel size to 1 cm² Capacitance? Time resolution?

Matteo Duranti et al. Instruments 5.2 (2021) @

Timing: 1 \mbox{cm}^2 LGADs for Space Application

Thickness and Gain Optimization

Thickness and Gain Optimization

[M. Centis Vignali et al. VCI (2022)]

Thickness and Gain Optimization

- Sensor capacitance
- Uniform charge deposition (No Landau fluctuations)
- Saturated velocities
- Noise = Amplifier Sensor

LGAD thickness > 100 $\mu\text{m}\text{,}$ gain \approx 100

[M. Centis Vignali et al. VCI (2022)&]

Space LGADs

Production of large LGAD sensors under the INFN project

- A total of 16 wafers
- Pad and strip sensors
- Strips: 100 μm, 150 μm, 200 μm pitch
- Active thickness: \rightarrow 50, 100, and 150 µm
- Gain implant dose and energy optimized for high gain using TCAD
- Optimized for large areas
- Signal propagation

Samples investigated

- ► Pad active area:
 - A (6.25 mm²)
 - B (25 mm²)
 - C (100 mm²)

- Pad types:
 - Type-1: Metal frame
 - **Type-2**: Fully Metallized, Contacts at the edge of the active area
 - **Type-3**: Fully Metallized, Contacts covers all active area

Gain: using IR LED

• Operating temperature = 24° with illumination.

$$Gain|_{LED} = rac{(I_{light} - I_{dark})|_{LGAD}}{(I_{light} - I_{dark})|_{PIN}}$$

- value of gain highly depends on the dose and energy of the implant
- Early breakdown: 100 µm → 6, 7, 10 150 µm → 13, 15, 16
 - 50 μ m: gain of $\mathcal{O}(10)$, 200 \leq V_{bd} \leq 300
 - 100 µm wafer 8, 9
 - 150 µm wafer 11, 12, and 14

8/15

Gain: using TCT

Laser intensity: 1 MIP

$$Gain = \frac{Q_{LGAD}}{Q_{PIN}}$$

- The gain trend is consistent with the gain measured from the test structures using LED.
- The impact ionization model used for this work tend to overestimate the gain.

- Errors account for uncertainties due to amplifier response evaluated through repeated measurements
- The non-uniformity of gain among the devices from same wafer is due to the non-uniformity in the implant dose of the gain layer.

abisht@fbk.eu

Timing: 1 cm² LGADs for Space Application July 2, 2024

Jitter Measurements

 $\sigma_{jitter} = \frac{\sigma_{Noise}}{Slew \ Rate \ (dV/dt)}$

- ▶ Measurement (no averaging in Oscilloscope) → Noise estimation
- Measurement (256 averages in Oscilloscope) \rightarrow Slew rate estimation
- Slew-Rate: slope of the line that best fits the leading edge between 20% and 80% of signal amplitude

Jitter Measurements

- 100 µm thick sensors
- > Smaller active areas result in a steeper leading edge with higher amplitude
- Collected charge is practically the same

abisht@fbk.eu

Timing: 1 cm² LGADs for Space Application July 2, 2024 11 / 15

Jitter Measurements: 1 cm² sensors

The average noise remains below 2 mV

- \blacktriangleright Lack of trend \rightarrow shot noise is not the dominant noise figure in the system
- σ_{jitter} < 100 ps : wafer 9, 12, and 14</p>
- $ightarrow \sigma_{jitter} < 50 \
 m ps$: 36 ps for wafer 9 (100 μ m), and 34 ps for 14 (150 μ m)

abisht@fbk.eu

Timing: 1 cm² LGADs for Space Application July 2, 2024 12 / 15

FONDAZIONE BRUNO KESSLER

Uniformity

- Reference point is the signal near to the bond
- ► Hit position
- $\blacktriangleright X = Check points for uniformity$
- Contribution of the arrival time to the timing resolution is:

$$\sigma_{\mathit{uni}} = rac{153}{\sqrt{12}} \; \mathit{ps} pprox$$
 44 ps

> Time resolution due to jitter and non-uniformity of the signal shape at 300 V is:

$$\sigma_t = \sigma_{\textit{Jitter}} \oplus \sigma_{\textit{uni}} \approx 60 ps$$

abisht@fbk.eu

Timing: 1 cm² LGADs for Space Application

Summary

- Include timing measurement for each hit/track in the silicon tracker
- \blacktriangleright LGADs \rightarrow suitable candidate based on the timing performance for HEP experiments
- ► Increase the active area of the LGADs \rightarrow Gain $\sim O(100)$ and Thickness (>100 µm)
- Space LGADs production optimized to study large area LGADs
- ▶ Jitter under 40 ps for 1 cm² LGADs, and $\sigma_t \approx 60$ ps including non-unformity effects

Timing: 1 cm² LGADs for Space Application

Future prospects

- New production batch to further study the timing resolution and effects of signal propagation
- Time resolution using particle source

THANK YOU FOR YOUR ATTENTION

abisht@fbk.eu

Timing: 1 cm² LGADs for Space Application

July 2, 2024

15 / 15