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Introduction

 Timepix 3 readout chip

Timepix 3 chips [1] have single particle detection sensitivity. Particle creates a
signal spread over multiple pixels. These signals can be combined into a cluster.

{E, S, H, Roundness, Linearity, ...} o

« 256 x 256 pixels with 55 um pitch size

Measure deposited energy and time of arrival from every pixel

[X, Y, ToT, ToA] [X,Y, E, T]
o [ « Data-driven readout - data sent out immediately after a pixel is hit,
oarticles . . while the rest of the chip remains sensitive.
Single-particle classification

Single particle clusters were classified into 5 distinct categories: electrons
+ photons, alpha particles, ion nuclel (except He), low energy protons (E
< 100 MeV) and high energy protons (E > 100 MeV). Machine

learning methods were employed to facilitate particle classification:

Different particle types produce clusters with different features. Particle

classification is investigated for TraX Engine software [2].
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Former method facilitates the time-ordered sequence of pixels in clusters,
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