## **Evolution of the electrical characteristics of the ATLAS ITk strip sensors with HL-LHC radiation exposure range**

J. Fernández-Tejero<sup>a,b\*</sup>, È. Bach<sup>c</sup>, V. Cindro<sup>d</sup>, V. Fadeyev<sup>e</sup>, P. Federicova<sup>f</sup>, C. Fleta<sup>c</sup>, S. Hirose<sup>g</sup>, J. Kroll<sup>f</sup>, I. Mandic<sup>d</sup>, K. Maeyama<sup>g</sup>, M. Mikestikova<sup>f</sup>, L. Poley<sup>a,b</sup>, B. Stelzer<sup>a,b</sup>, P. Tuma<sup>f</sup>, M. Ullán<sup>c</sup>, Y. Unno<sup>h</sup>

<sup>a</sup> Simon Fraser University (SFU), Burnaby, Canada <sup>b</sup> TRIUMF, Vancouver, Canada <sup>d</sup> Jozef Stefan Institute, Ljubljana, Slovenia

<sup>e</sup>Santa Cruz Institute for Particle Physics (SCIPP), University of California, Santa Cruz, USA <sup>f</sup> Institute of Physics, Academy of Science of the Czech Republic, Prague, Czech Republic <sup>c</sup> Centro Nacional de Microelectrónica (IMB-CNM), CSIC, Barcelona, Spain <sup>g</sup> Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan <sup>h</sup> Institute of Particle and Nuclear Study, KEK, Tsukuba, Japan

\*Corresponding author: Javier Fernández-Tejero (e-mail address: xavi.fdez@cern.ch)

## Abstract









The objective of the study is to evaluate the evolution of the performance of the new ATLAS Inner-Tracker (ITk) strip sensors as a function of radiation exposure, to ensure the proper operation of the upgraded detector during the lifetime of the High-Luminosity Large Hadron Collider (HL-LHC). Full-size ATLAS18 Barrel Short-Strip sensors with final layout design have been irradiated with neutrons and gammas, to confirm the results obtained with mini-sensors during the development phase. The irradiations cover a wide range of fluences and doses that ITk will experience, going from 1e13 n<sub>eq</sub>/cm<sup>2</sup> and 0.49 Mrad, to 1.6e15 n<sub>eq</sub>/cm<sup>2</sup> and 80 Mrad. The split irradiation enables a proper combination of fluence and dose values of the HL-LHC, including a 1.5 safety factor. A complete electrical characterization of the key sensor parameters before and after irradiation is presented, studying the leakage current, bulk capacitance, and single-strip and inter-strip characteristics. The results confirm the fulfillment of the ATLAS specifications, and the study of a wide range of fluences and doses allows to obtain detailed results about the frequency dependence of the bulk capacitance measurements, or the evolution of the punch-through protection and inter-strip resistance with radiation.

# ATLAS ITK Strip Sensors

# raciations



### **Single Strip Characteristics**

**Coupling Capacitance (C\_{coupl}):** (6) No variation with irradiation <sup>[4]</sup> **Bias Resistance** (R<sub>bias</sub>):

(7) Increase of Rbias with irradiation <sup>[4,5]</sup>

G

 $\mathbf{02}$ 

oRiD

(8) Lower  $R_{\text{bias}}$  obtained at lower bias voltages, due to reduction of  $R_{\text{int}}$  caused by gamma irradiation **Punch-Through Protection (PTP) voltage:** 

(9) Increase of PTP voltage with irradiation <sup>[5]</sup>, but showing reduction between  $5e_{13} - 5e_{14} n_{eq}/cm^2$ (10) Sensors irradiated only with neutrons showing lower PTP voltage than sensors irradiated with neutrons+gammas



**ATLAS Specs:**  $-C_{coupl} \ge 20 \text{ pF/cm (pre-irrad)}$  $-R_{\text{bias}} = 1.5 \pm 0.5 \text{ M}\Omega \text{ (pre-irrad)},$  $1.8\pm0.5 \text{ M}\Omega \text{ (post-irrad)}$ - PTP not defined

#### **L** Inter-strip Characteristics

- Inter-strip Capacitance (C<sub>int</sub>):
- (11) No significant variation of  $C_{int}$  with
- irradiation above 300 V<sup>[4]</sup>
- (12) No clear influence of gamma irradiation on  $C_{int}$
- **Inter-strip Resistance (R<sub>int</sub>):** 
  - (13) Reduction  $R_{int}$  with irradiation <sup>[4,5]</sup>. Lowest values between 1-5e13  $n_{eq}$ /cm<sup>2</sup>
- (14) Sensors irradiated only with neutrons showing higher  $R_{int}$  than sensors
- irradiated with neutrons+gammas<sup>[4]</sup>



**ATLAS Specs:**  $-C_{int} < 1 \text{ pF/cm}$  at 300 V  $R_{int} > 10 \text{ x}$  Rbias at 400 V (pre-irrad) at 500 V (post-irrad)



## Concusions

# References

All the parameters measured fulfill the ATLAS specifications before/after irradiation, confirming the results obtained with minisensors during the development phase. Additionally, some interesting results were observed:

- Frequency dependence of bulk capacitance measurements after neutron+gamma irradiation up to  $1.6e15 n_{eq}/cm^2 + 80 Mrad$
- Increase of  $R_{bias}$  and PTP voltage with irradiation, but showing a plateau of PTP voltage between 5e13-5e14  $n_{eq}/cm^2$  (\*)
- Reduction of  $R_{int}$  with irradiation, but showing the lowest values between 1e13-5e13  $n_{eq}/cm^2$  (\*)
- Additional gamma irradiations (ionization) after neutron irradiations (displacement), increases PTP voltage (\*) and reduces R<sub>int</sub> These results were not observed previously with prototypes. Further studies needed to understand the mechanisms responsible.

<sup>[1]</sup> Y. Unno, et al. JINST 18 (2023) T03008) <sup>[2]</sup> A. Chilingarov, et al. RD48, ROSE/TN/2002-02 <sup>[3]</sup> M. Moll, PoS (Vertex2019) 027 <sup>[4]</sup> M. Mikestikova, et al. NIM A 983 (2020) 164456 <sup>[5]</sup> È. Bach, et al. NIM A 1064 (2024) 169435

This work was supported by the Canada Foundation for Innovation and the Natural Sciences and Engineering Research Council of Canada; the Spanish R&D grant PID2021-126327OB-C22, funded by MCIN/AEI/10.13039/501100011033 and by ERDF/UE; the European Structural and Investment Funds and the Czech Ministry of Education, youth and Sports of Czech Republic via projects LM2023040 CERN-CZ, LTT17018 Inter-Excellence, and FORTE - CZ.02.01.01/00/22 008/0004632; and the US Department of Energy, grant DE-SC0010107. The authors would like to thank the crew at the TRIGA reactor in Ljubljana, with the support from the Slovenian Research and Innovation Agency (research core funding P1-0135 and project J1-3032), and also the technical team at CYRIC of Tohoku University (Japan), supported by JSPS KAKENHI 23K13114.