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e Evaluate the capability of speeding up the
clustering process through parallelization.

® Focus on real-time clustering application.

® Measure the clustering performance for clusters of

e Benchmarking dataset
varying sizes.
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Y, 59.6 keV from Am-241 1.46 1.65
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Merging incomplete clusters split by the parallelization checking (step 4). 0 2000 4000 6000 8000

number of cuda threads launched for clustering
e Merging must be performed quickly. A cascade approach is used to quickly detect

Conclusion
complete clusters. Moreover, the merging is parallelized — clusters from each clustering

node are split among a pair of merging nodes. This way, we obtain multiple streams of = e |n both CPU- and GPU-based clustering algorithms we achieve a speed-up scaling with the
complete clusters, which may or may not be concatenated. number of used cores — up to 7X speed-up for CPU clustering and 100X speed-up for GPU
Outputter clustering with respect to the baseline.

Sorter Clusterer ‘ Merger

Sorter Clusterer v' Merger
Reader *
A

Sorter Clusterer & Merger

A

30th June — 4th July 2024, iWoRiD 2024, Lisbon Acknowledgements:
Email- celko.tom@gmail.com This research was funded by Grant Agency of Charles University under grant no. 142424 and

the Czech Science Foundation grant number GM23-04869M.

e Due to buffered processing, GPU clustering is suitable for processing data from multiple

Outputter devices at once (quad) with little synchronization — only at the start/end of the buffer.

Outputter e Further improvements were implemented (copy & compute overlap, shared memory use...)
with more coming up.
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