
CPU- and GPU-based Acceleration of Event-Building for
Hybrid Pixel Detectors
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• Spatial – divides the area of 
the sensor into sectors.

• Temporal – divides the hits into 
time windows. 
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ProcessHit(hit):

  N = findNeighboringClusters(hit) //FIND

  if (|N| == 0)

    createNewCluster(hit)

  else if(|N| == 1)

    addHitToCluster(hit, N.first)

  else

    newCluster = mergeClusters(N) //UNION

    addHitToCluster(hit, newCluster)

  outputOldClusters()

High energy

Low energy

● Hybrid pixel detectors like 
Timepix3 and Timepix4 
detect individual pixels hit by 
particles. For further analysis, 
individual hits from such 
sensors need to be grouped 
into spatially and temporally 
coinciding groups called 
clusters. 

● The Timepix3 detectors can 
generate more than 40 Mhit/s (up 
to 640 Mhit/s with Timepix4) which 
is far beyond the current 
capabilities of the real-time 
clustering algorithms, processing at 
roughly 3 MHit/s. 

Timepix3 properties

Pixel matrix 256×256

Pixel size 55 𝜇m × 55 𝜇m

Time
resolution

1.56 ns

Bits per hit 48

Methods

Goals

Parallel clustering performs the distributed computation of the clusters

● Step based (pipeline) – perform individual steps of the algorithm in the parallel

● Data based – split the data between workers, which can produce incomplete clusters. 

● Evaluate the capability of speeding up the 
clustering process through parallelization.

● Focus on real-time clustering application.

● Measure the clustering performance for clusters of 
varying sizes.

Merging incomplete clusters split by the parallelization

● Merging must be performed quickly. A cascade approach is used to quickly detect 
complete clusters. Moreover, the merging is parallelized – clusters from each clustering 
node are split among a pair of merging nodes. This way, we obtain multiple streams of 
complete clusters, which may or may not be concatenated.

Introduction
Disjoint union find

GPU parallel clustering

Experiments

● Benchmarking dataset 

● In both CPU- and GPU-based clustering algorithms we achieve a speed-up scaling with the 
number of used cores – up to 7× speed-up for CPU clustering and 100× speed-up for GPU
clustering with respect to the baseline.

● Due to buffered processing, GPU clustering is suitable for processing data from multiple
devices at once (quad) with little synchronization – only at the start/end of the buffer.

● Further improvements were implemented (copy & compute overlap, shared memory use…) 
with more coming up. 

Conclusion

● Additionally, the hits from the 
detector are not guaranteed to be 
fully temporally ordered.

This research was funded by Grant Agency of Charles University under grant no. 142424 and 
the Czech Science Foundation grant number GM23-04869M.
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Pixel matrix representation

Tree representation

New hit

Pixel hits (x, y, ToT, ToA)

•Common data structure for connected 
component labeling.
•Clusters are represented by the root

(min ToA hit).
•Determine which cluster is parent:

Sorted output -> merge by ToA

     Non-sorted output -> merge by size.
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Algorithm

1. Copy data buffer from host to GPU (from pinned
memory).

2. Sort hits temporally (parallel radix sort).
3. Use disjoint-union-find clustering for each chunk

in parallel.

4. Apply the step 3 again to hits around the border
of each chunk (to avoid splitting clusters)

5. Sort each hit by “cluster id” = root of the disjoint-
union-find tree (hit with minimum ToA in cluster)

6. Copy data buffer from GPU to host

● Clustering throughput scaling (with 

respect to the thread count) 

CPU parallel clustering 
We performed multiple I/O-
independent benchmarks –
the data stream was
generated by repeating a 
fixed-sized buffer of hits. 

Note: Shown CPU benchmarks were 
run on AMD EPYC 7702, 32 cores 
@2.0Ghz, turbo 3.3Ghz. 

Path compression:
•Every time we visit a path to 

the root, set the root as the 
parent for each visited node. 
•This makes the tree

shallower and faster for next
access.  

GPU clustering observations: 
•The GPU parallel clustering
also scales well with number 
of cores.
•There is a negative
correlation between
clustering speed and the
mean cluster size. This is 
expected, as large clusters
imply more extensive border
checking (step 4).

Note: GPU benchmarks were run 
on RTX 4070 Ti Super 16 GB with 
PCIE 4.0 x16.

GPU parallel clustering 

Compressed tree
after calling
“Find(7)“

CPU clustering observations: 
•The CPU parallel clustering 
scales well with the number 
of cores.
•Data dependence is 
insignificant for high thread 
count.

Dataset
Mean 
cluster 

size

Stadard deviation 
of cluster size

γ, 59.6 keV from Am-241 1.46 1.65
π, 40 GeV/c, 0˚ 3.86 6.66
π, 40 GeV/c, 45˚ 20.09 10.58
π, 40 GeV/c, 75˚ 56.02 30.26
Pb, 385 GeV/c, 0˚ 422.81 860.71
Pb, 385 GeV/c, 50˚ 280.27 939.95
Pb, 385 GeV/c, 90˚ 210.82 1305.84
Pb, 385 GeV/c, 0˚, subset 2200.96 363.65
Pb, 385 GeV/c, 50˚, subset 3606.30 834.28
Pb, 385 GeV/c, 90˚, subset 7303.24 5081.69
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