CPU- and GPU-based Acceleration of Event-Building for

Hybrid Pixel Detectors

S ERIMENTAL AND A
FACULTY Tomas Celko'?, Frantidek Mraz!, Petr Manek®?3, Benedikt Bergmann? fd \
OF MATHEMATICS 1Faculty of Mathematics and Physics, Charles University in Prague E %
AND PHY.SIC.S 2|nstitute of Experimental and Applied Physics, Czech Technical University in Prague 2 o) :
Charles University 3Department of the Physics and Astronomy, University College London CTU IN PRAGUE

Introduction GPU parallel clustering

Disjoint union find

: Array representation
, _ , High energy .
e Hybrid pixel detectors like Timepix3 properties Common da’:a;tll’ycture for connected pixel hits (x, v, ToT, ToA) h h
o . . . com onent abellinge. IXel nits (X, y, 1ol, 10 eee 1 6
Timepix3 and Timepix4 Pixel matrix 256X256 .l tp 8 ted by th t Labels before union
detect individual pixels hit by o USTErs are represented by the roo
oarticles. For further analysis Pixel size 55 um X 55 um (min ToA hit). Labels after union | | ¢
ndividual hits from such Time 1.56 ns * Determine which cluster is parent: border
4 to b 4 o e Sorted output -> merge by ToA
§ensors n.ee O DE groupe Bit hit 48 Non-sorted output -> merge by size. :
into spatially and temporally | IS per Nl Tree representation
incidi lled Algorithm :
coinciding groups Calie Low energy Cluster A Cluster B Cluster Union(A,B, 9)
clusters. oo) lonising 1. Copy data buffer from host to GPU (from pinned

particle memory).
' 2. Sort hits temporally (parallel radix sort).
3. Use disljoint-union-find clustering for each chunk

. Sensor in parallel.

4. Apply the step 3 again to hits around the border
| 1] of each chunk (to avoid splitting clusters)

e The Timepix3 detectors can
generate more than 40 Mhit/s (up
to 640 Mhit/s with Timepix4) which ~ Bissvoltage —> ==
is far beyond the current -
capabilities of the real-time

| . Isorith . “— Bump bonds 5. Sort each hit by “cluster id” = root of the disjoint-
clustering algorithms, processing at pijseisite electrodes —— union-find tree (hit with minimum ToA in cluster)
roughly 3 MHit/s. Wire bonds —> v VvV VvV VvV [/ 6. Copy data buffer from GPU to host
e Additionally, the hits from the | | S .
detector are not guaranteed to be | PCB PatEh compression: "
fully temporally ordered. Readout pads very time we visit a path to
the root, set the root as the

parent for each visited node. Compressed tree

* This makes the tree after calling
shallower and faster for next “rinq(7)“
access.

e Evaluate the capability of speeding up the
clustering process through parallelization.

® Focus on real-time clustering application.

® Measure the clustering performance for clusters of

e Benchmarking dataset
varying sizes.

Dataset cl\lltﬁ::r Stadard deviation

size of cluster size

Y, 59.6 keV from Am-241 1.46 1.65

ProcessHit(hit): m40GeV/c, 45° 23.33 18?2

= fj ° ° ' m,40GeV/c, 75 5602 30.26

N = findNeighboringClusters(hit) //FIND n BEEE—) Se07

if (|N| == 0) e — POV 28027 939.95

: BOISSSIGEV/CRSONINNNN ~ 210.32 1305.84

createNewCluster(hit) - Pb, 385 GeV/c, 0°, subset 2200.96 363.65

. Pb, 385 GeV/c, 50°, subset 3606.30 834.28

else if(|N| == 1) o b 385 GeV/c o0 subset] 730324 5081.69

addHitToCluster(hit, N.first) ® Clustering throughput scaling (with
else

respect to the thread count)
newCluster = mergeClusters(N) //UNION

addHitToCluster(hit, newCluster)

We performed multiple 1/0O-
independent benchmarks —

outputOldClusters() the data stream was 25
generated by repeating a ey
Parallel clustering performs the distributed computation of the clusters fixed-sized buffer of hits. 520 o 250
. .) = —— 1, 75°
e Step based (pipeline) — perform individual steps of the algorithm in the parallel CPU clustering observatlops. 215 e Pb, 0"
*The CPU parallel clustering 5 BEGe
Reader Sorter Clusterer Outputter scales well with the number £ —+ Pb, 0°, subset
S Pb, 50°, subset
of cores. 3 e
. _ . . = Note: Shown CPU benchmarks were —+— Pb, 30", subset
e Data based — split the data between workers, which can produce incomplete clusters. *Data dependence is TR 4 run on AMD EPYC 7702, 32 cores
. o o o insignificant for high thread @2.0Ghz, turbo 3.3Ghz.
* Spatial — dlyldes the area of . T.empo.ral — divides the hits into count. : : - . - - -
the sensor into sectors. time windows. . . data fane count
" i . " al d _ GPU clustering observations: 350
its — temporal dimension its — spatial dimension «The GPU parallel clustering
T1 TZ ! t also scales well with number > RERA
T1 I T2 y E T, 0 c
of cores. =g — jg
. o = —— TI,
ABIC Dm *There is a negative = —— Pb, 0°
: . £ 200 —— Pb, 50°
T3 T 4 ; > correlation between S b 90°
' i < —«— Pb, 0°, subset
Temporal time cIusterllng speed anf\ the £ 150 DS
: — mean cluster size. This is 0 ~ Pb, 90°, subset
window cutoff X " . 100- Note: GPU benchmarks were run e
expected, as large clusters on RTX 4070 Ti Super 16 GB with
imply more extensive border 50 PCIE 4.0 x16.
Merging incomplete clusters split by the parallelization checking (step 4). 0 2000 4000 6000 8000

number of cuda threads launched for clustering
e Merging must be performed quickly. A cascade approach is used to quickly detect

Conclusion
complete clusters. Moreover, the merging is parallelized — clusters from each clustering

node are split among a pair of merging nodes. This way, we obtain multiple streams of = e |n both CPU- and GPU-based clustering algorithms we achieve a speed-up scaling with the
complete clusters, which may or may not be concatenated. number of used cores — up to 7X speed-up for CPU clustering and 100X speed-up for GPU
Outputter clustering with respect to the baseline.

Sorter Clusterer ‘ Merger

Sorter Clusterer v' Merger
Reader *
A

Sorter Clusterer & Merger

A

30th June — 4th July 2024, iWoRiD 2024, Lisbon Acknowledgements:
Email- celko.tom@gmail.com This research was funded by Grant Agency of Charles University under grant no. 142424 and

the Czech Science Foundation grant number GM23-04869M.

e Due to buffered processing, GPU clustering is suitable for processing data from multiple

Outputter devices at once (quad) with little synchronization — only at the start/end of the buffer.

Outputter e Further improvements were implemented (copy & compute overlap, shared memory use...)
with more coming up.

Outputter

Sorter Clusterer Merger

mailto:celko.tom@gmail.com

	Snímka 1: CPU- and GPU-based Acceleration of Event-Building for Hybrid Pixel Detectors

