
CPU- and GPU-based Acceleration of Event-Building for
Hybrid Pixel Detectors

T1 T2

T3 T4

• Spatial – divides the area of
the sensor into sectors.

• Temporal – divides the hits into
time windows.

Reader ClustererSorter Outputter

A D

B C F E H

G

A B C D E F G H

Hits – spatial dimension

x

Temporal
window cutoff

time

y

Hits – temporal dimension

T1 T2

Reader

ClustererSorter

ClustererSorter

ClustererSorter

Merger

ClustererSorter

Merger

Merger

Merger

Tomáš Čelko𝟏,𝟐, František Mráz𝟏, Petr Mánek𝟐,𝟑, Benedikt Bergmann𝟐

1Faculty of Mathematics and Physics, Charles University in Prague
2Institute of Experimental and Applied Physics, Czech Technical University in Prague

3Department of the Physics and Astronomy, University College London

30th June – 4th July 2024, iWoRiD 2024, Lisbon
Email: celko.tom@gmail.com

ProcessHit(hit):

 N = findNeighboringClusters(hit) //FIND

 if (|N| == 0)

 createNewCluster(hit)

 else if(|N| == 1)

 addHitToCluster(hit, N.first)

 else

 newCluster = mergeClusters(N) //UNION

 addHitToCluster(hit, newCluster)

 outputOldClusters()

High energy

Low energy

● Hybrid pixel detectors like
Timepix3 and Timepix4
detect individual pixels hit by
particles. For further analysis,
individual hits from such
sensors need to be grouped
into spatially and temporally
coinciding groups called
clusters.

● The Timepix3 detectors can
generate more than 40 Mhit/s (up
to 640 Mhit/s with Timepix4) which
is far beyond the current
capabilities of the real-time
clustering algorithms, processing at
roughly 3 MHit/s.

Timepix3 properties

Pixel matrix 256×256

Pixel size 55 𝜇m × 55 𝜇m

Time
resolution

1.56 ns

Bits per hit 48

Methods

Goals

Parallel clustering performs the distributed computation of the clusters

● Step based (pipeline) – perform individual steps of the algorithm in the parallel

● Data based – split the data between workers, which can produce incomplete clusters.

● Evaluate the capability of speeding up the
clustering process through parallelization.

● Focus on real-time clustering application.

● Measure the clustering performance for clusters of
varying sizes.

Merging incomplete clusters split by the parallelization

● Merging must be performed quickly. A cascade approach is used to quickly detect
complete clusters. Moreover, the merging is parallelized – clusters from each clustering
node are split among a pair of merging nodes. This way, we obtain multiple streams of
complete clusters, which may or may not be concatenated.

Introduction
Disjoint union find

GPU parallel clustering

Experiments

● Benchmarking dataset

● In both CPU- and GPU-based clustering algorithms we achieve a speed-up scaling with the
number of used cores – up to 7× speed-up for CPU clustering and 100× speed-up for GPU
clustering with respect to the baseline.

● Due to buffered processing, GPU clustering is suitable for processing data from multiple
devices at once (quad) with little synchronization – only at the start/end of the buffer.

● Further improvements were implemented (copy & compute overlap, shared memory use…)
with more coming up.

Conclusion

● Additionally, the hits from the
detector are not guaranteed to be
fully temporally ordered.

This research was funded by Grant Agency of Charles University under grant no. 142424 and
the Czech Science Foundation grant number GM23-04869M.

Cluster A Cluster B Cluster Union(A,B, 9)

1

5 2

3

46

87

3

46

87

1

5 2

7

1 2 9 4

5 3 6

8

… 𝒉𝟏 𝒉𝟐 𝒉𝟑 𝒉𝟒 𝒉𝟓 𝒉𝟔 𝒉𝟕 𝒉𝟖 𝒉𝟗 … ...

… 1 1 3 3 1 3 6 6 9 … ...

… 1 1 1 3 1 3 6 6 1 … ...

border border

9

Labels before union

Labels after union

Array representation

3

46

87

1

5 2 9

Pixel matrix representation

Tree representation

New hit

Pixel hits (x, y, ToT, ToA)

•Common data structure for connected
component labeling.
•Clusters are represented by the root

(min ToA hit).
•Determine which cluster is parent:

Sorted output -> merge by ToA

 Non-sorted output -> merge by size.

Outputter

Outputter

Outputter

Outputter

Algorithm

1. Copy data buffer from host to GPU (from pinned
memory).

2. Sort hits temporally (parallel radix sort).
3. Use disjoint-union-find clustering for each chunk

in parallel.

4. Apply the step 3 again to hits around the border
of each chunk (to avoid splitting clusters)

5. Sort each hit by “cluster id” = root of the disjoint-
union-find tree (hit with minimum ToA in cluster)

6. Copy data buffer from GPU to host

● Clustering throughput scaling (with

respect to the thread count)

CPU parallel clustering
We performed multiple I/O-
independent benchmarks –
the data stream was
generated by repeating a
fixed-sized buffer of hits.

Note: Shown CPU benchmarks were
run on AMD EPYC 7702, 32 cores
@2.0Ghz, turbo 3.3Ghz.

Path compression:
•Every time we visit a path to

the root, set the root as the
parent for each visited node.
•This makes the tree

shallower and faster for next
access.

GPU clustering observations:
•The GPU parallel clustering
also scales well with number
of cores.
•There is a negative
correlation between
clustering speed and the
mean cluster size. This is
expected, as large clusters
imply more extensive border
checking (step 4).

Note: GPU benchmarks were run
on RTX 4070 Ti Super 16 GB with
PCIE 4.0 x16.

GPU parallel clustering

Compressed tree
after calling
“Find(7)“

CPU clustering observations:
•The CPU parallel clustering
scales well with the number
of cores.
•Data dependence is
insignificant for high thread
count.

Dataset
Mean
cluster

size

Stadard deviation
of cluster size

γ, 59.6 keV from Am-241 1.46 1.65
π, 40 GeV/c, 0˚ 3.86 6.66
π, 40 GeV/c, 45˚ 20.09 10.58
π, 40 GeV/c, 75˚ 56.02 30.26
Pb, 385 GeV/c, 0˚ 422.81 860.71
Pb, 385 GeV/c, 50˚ 280.27 939.95
Pb, 385 GeV/c, 90˚ 210.82 1305.84
Pb, 385 GeV/c, 0˚, subset 2200.96 363.65
Pb, 385 GeV/c, 50˚, subset 3606.30 834.28
Pb, 385 GeV/c, 90˚, subset 7303.24 5081.69

Acknowledgements:

mailto:celko.tom@gmail.com

	Snímka 1: CPU- and GPU-based Acceleration of Event-Building for Hybrid Pixel Detectors

