Experimental results of the pFREYA16 ASIC for x-ray ptychography in continuous wave light sources

Paolo Lazzaroni^{1,2}, M. Hammer³, M. Manghisoni^{1,2}, A. Miceli³, L. Ratti^{1,4}, V. Re^{1,2}, H. Shi³, G. Torilla^{1,4}

¹INFN Sezione di Pavia, Pavia, Italy ²Università degli Studi di Bergamo, Bergamo, Italy ³Argonne National Laboratory, Lemont, US ⁴Università di Pavia, Pavia, Italy

Abstract

The pFREYA16, prototype Fast Readout for ptYchography Applications with 16 channels, ASIC is a pixellated 8-by-2 readout matrix developed for ptychography experiments based on fourth generation storage ring light sources, also known as Diffraction-Limited Storage Rings (DLSR), pushing towards continuous wave operation. The target of the experiment is to obtain a 128-by-128 matrix of pixels, working at a frame rate of 1 MHz with single-photon resolution, as well as low-noise and low-power figures, in a modest-size pixel area of $150 \,\mu\text{m} \times 150 \,\mu\text{m}$. The current prototype reports respectively a noise of 250 e⁻ rms and a power consumption of 220 µW per pixel. The readout chain is composed of a switch-reset CSA and a semi-Gaussian unipolar RC-CR shaper, and includes signal discrimination, zerosuppression capabilities, and pixel-level analog to digital conversion. The ASIC is also configurable for 5, 9, or 25 keV input photon energy, with a full well of 256 equivalent photons in each mode, and four different peaking times are available for noise optimisation. The conference presentation will focus on a full characterisation of the CSA and the shaper stage, and will provide insight into the equivalent noise charge obtained in each mode, with a comparison between post-layout simulations and actual measurements on the chip.

Keywords - ptychography, continuous wave, low-noise, front-end channel, pixellated readout