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Introduction

• In the present work the measurements obtained from a read-

out channel for a pixelated detector to be employed in x-ray

ptychography, named pFREYA16 (prototype Fast Readout for

ptYchography Applications with 16 pixels), are reported.

• The target of FALCON collaboration (University of Bergamo,

University of Pavia, and Argonne National Laboratory) is to de-

velop a low-noise, low-power 128-by-128 hybrid pixel matrix

operating at 1MHz conversion rate.

X-ray ptychography
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• X-ray ptychography key idea is to collect a large volume of

diffraction patterns.

• To avoid motor repositioning overhead (> 1ms per sample),

diffraction patterns are continuously acquired (fly-scan pty-

chography).

• Typical ptychography throughput is low [1], but can be sped up

by acquiring modest-sized frames.

• Iterative phase retrieval algorithms are applied to the data to

reconstruct the phase information from the detected ampli-

tude.

• Amplitude and phase information are combined to obtain a

nanometric model of the specimen, exceeding physical lens

limits [2].

pFREYA16 readout channel
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• Developed in a commercial 65nm CMOS technology.

• Single photon detection, with an equivalent noise charge of

250e- rms at a detector capacitance of 100 fF.

• Adapts to 3 input photon energies: 5 keV, 9 keV, and 25 keV.

• Input dynamic range up to 256 photons for each mode.

• Unipolar semi-Gaussian RC-CR shaper with 4 selectable

peaking times between 230ns and 530ns.

• Signal-Over-Threshold comparator chain to reject < 1 input

photon signals.

• Output digitised by a 10-bit SAR ADC [3].

• Power consumption of 220µW.

• Area occupation of 150µm× 150µm, comprising digital blocks.

Simulated transient signals
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• Transient simulation, reported for texp = 300ns and tp = 450ns

in 9 keV photon mode at half dynamic.

Noise optimisation in simulation
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• Transient noise simulations performed on schematic-level CSA

and ideal shaper.

• Optimisation study on exposure time texp and peaking time tp.

• The shorter texp, the better.

• The longer tp, the better.

pFREYA16 elementary cell
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• Modular layout, sharing reference tracks and digital buses.

• Channel current bias shared by 4 adjacent pixels, not shown.

• Peripheral injection circuit and monitor circuit are not shown.

• 9 metal layers and MIM capacitors over electronics.

pFREYA16ASIC
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• Area of 1.7mm×2mm.

• CLCC68 package.

• Cells mirrored about vertical axis to isolate analog from digital.

• On the right, pFREYA16, a prototype 8-by-2 matrix.

• On the left, pFREYATS, test structures arranged in the same

8-by-2 matrix fashion.

Transientmeasurements
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• CSA and shaper transients as expected.

• Slower injection strobe used due to test setup limitations.

• Overshoot and artifacts due to test board interface.

• Peaking time 6% shorter than expected but scaling by 1̃00ns,

in accordance with simulations.

Transcharacteristic measurements

Mode [keV] 5 9 18 25
Gain [mV/# ] 2.143 2.07 2.104 2.039
Gain [mV/fC] 9.766 5.241 2.663 1.858

INL [%] 2.25 1.5 0.9 1.38
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Mode [ns] 220 308 405 493
Gain [mV/# ] 2.525 2.414 2.416 2.31
Gain [mV/fC] 6.392 6.11 6.117 5.848

INL [%] 2.26 1.53 2.25 2.71
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• CSA and shaper transcharacteristics are in line with simula-

tions.

• Input and output dynamic range as expected.

• Gain 4% higher than expected.

• Linearity improved with respect to simulation.

ENC results
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 energy = 9 keV

• ENC measurements performed on the shaper waveform ob-

tained through an oscilloscope.

• The results are higher than expected, with an optimal ENC of

about 670 e- rms.

• The optimum is obtained for the longest peaking time.

• Source of the higher noise can be an instability on the shaper

baseline not foreseen in simulations.

Conclusions

• A prototype readout channel to be employed in x-ray pty-

chography has been designed and developed.

• The core analog blocks, namely the CSA and the shaper, have

been thoroughly tested.

• Channel performance are in line with simulation, exception

made for noise which seems to be higher than expected, cur-

rently under investigation

• Themixed-signal section of the channel is currently under test.

• New version with faster digital backend is envisioned in the

near future.
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