Characterization of silicon Monolithic Stitched Sensors for ALICE ITS3 in view of LHC Run 4

Marius Wilm Menzel^(a,b) on behalf of the ALICE Collaboration, marius.wilm.menzel@cern.ch iWoRiD 2024, 30/06-04/07/2024, Lisbon

ALICE Inner Tracking System for LHC Run 4

- A new Inner Tracking System ITS3 will replace the innermost layers of the ALICE ITS2 during LHC Long Shutdown 3 (2026-2028)
- Reducing material budget down to 0.086 % X₀ per layer, more homogeneous distribution of material over the azimuth as for ITS2

- Significant **improvement of tracking resolution**, especially for low transverse momenta (*Fig. 1*)
- 3 truly cylindrical, wafer-sized, self-supporting half-layers
- Each half-layer consists of **ultra-thin** (≤ 50 μm), **large-area** $(10 \text{ cm} \times 26 \text{ cm})$, flexible MAPS (*Fig. 3*)

Beampipe inner/outer radius (mm)		16.0/16.5		
IB Layer parameters	Layer 0	Layer 1	Layer 2	
Radial position (mm)	19.0	25.2	31.5	
Length (sensitive area) (mm)	260	260	260	
Pseudo-rapidity $coverage^{a}$	± 2.5	± 2.3	± 2.0	
Active area (cm^2)	305	407	507	
Pixel sensors dimensions (mm^2)	266 imes 58.7	266 imes 78.3	266 imes 97.8	
Number of pixel sensors / layer		2		
Material budget (% X_0 / layer)	0.07			
Silicon thickness (μm / layer)	≤ 50			
Pixel size (μm^2)	O(20 imes22.5)			
Power density (mW/cm^2)	40			
NIEL $(1 \text{ MeV } n_{eq} \text{ cm}^{-2})$	10^{13}			
TID (kGray)	10			
^a The pseudorapidity coverage of the detector layers refers to tracks originating from a collision at the nominal interaction point $(z = 0)$.				

Fig. 1: Material budget of ITS3 Layer 0 [1] *Fig. 2:* Simulated ITS2/ITS3 ponting resolution [1]

Fig 3: Mechanical mockup of three ITS3 half-layers [1,2]

1 of 6 MOST

Fig. 4: ITS3 general parameters and requirements [1]

Submissions towards a truly-cylindrical, wafer-sized, nearly massless detector

1 of 6 MOSS

Successfully validated the use of	First submission of large-scales	Full size & functionality	Final Sensor to be used in ITS3
the TPSCo. 65 nm CMOS	stitched MAPS prototypes:	prototype for the final ITS3	
technology for HEP	MOSS, MOST	sensor: MOSAIX	

Pixel Test Structures of the Engineering Run 1 (ER1)

MOnolithic Stitched Sensor (MOSS)

Sensor layout:

- Chip size: **14 mm x 259 mm**
- 6.7 million pixels organised in 10 Repeated Sensor **Units** (RSUs)
- Each RSU hosts 8 pixel matrices (regions) • 4 x 256 x 256 pixels with 22.5 μm pitch
 - 4 x 320 x 320 pixels with 18.5 μm pitch
- Matrices include different front-end implementations

MOnolithic Stitched Sensor with Timing (MOST)

Sensor layout:

- Chip size: **2.5 mm x 259 mm**
- 0.9 million pixels with 18 µm pitch

Scope:

- Testing production with **high integration density in pixel** and testing of detaching subsets of pixels with power switches to handle possible shorts
- Testing transmission quality of high-speed data over full length of the ITS3

Scope:

- define the layout and stitching parameters for the subsequent full, wafer-scale MAPS
- First yield and uniformity studies of the stitched sensor production
- **Characterisation** of the pixel-matrix front-end

Fig. 6: MOSS bonded on a carrier card [1]

Fig 7: MOST bonded on a carrier card

First yield assessment results:

- Wafer-to-wafer variation, but significant numbers of wafers show yield compatible with ITS3 requirements
- Only observed failure mode is shorts in top metals \rightarrow will be resolved for ER2

First Characterisation results:

- MOSS can be operated with above 99% efficiency while maintaining <10⁻⁶ pixel⁻¹ event⁻¹ fake-hit rate (ITS3 requirement)
- First assessment of the spatial resolution shows < 6 μ m resolution (dedicated study to be carried-out)

References

[1] Technical Design Report of the ITS3 – A bent wafer-scale monolithic pixel detector, ALICE Collaboration, December 11, 2023, Journal of Physics G: Nuclear and Particle Physics, (8):087002, jul.

[2] Letter of Intent for an ALICE ITS Upgrade in LS3, ALICE Collaboration, September 8, 2019

(a) European Organisation for Nuclear Research (CERN), Geneva, Switzerland (b) Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany

Conclusion and Outlook

- Technical Design Report of ITS3 approved by CERN LHC Comitee (LHCC) and the CERN Research board (RB)
- ER1 sensors are working and are currently characterised:
 - Yield prediction for ER2 complies with ITS3 requirements (based on ER1 experience)
 - MOSS operable with >99% efficiency maintaining <10⁻⁶ pixel⁻¹ event⁻¹ fake-hit rate
- ER2 design is currently finalised
- ITS3 will be installed during the Long Shutdown 3 (2026 2028)